Mercurial > hg > Gears > GearsAgda
comparison hoareBinaryTree.agda @ 625:074fb29ebf57
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Nov 2021 22:30:40 +0900 |
parents | bf27e2c7c6c5 |
children | 6465673df5bc |
comparison
equal
deleted
inserted
replaced
624:bf27e2c7c6c5 | 625:074fb29ebf57 |
---|---|
200 | 200 |
201 findPP : {n m : Level} {A : Set n} {t : Set m} | 201 findPP : {n m : Level} {A : Set n} {t : Set m} |
202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | 202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) |
203 → (Pre : findPR tree stack (λ t s → Lift n ⊤)) | 203 → (Pre : findPR tree stack (λ t s → Lift n ⊤)) |
204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) | 204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) |
205 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → t) → t | 205 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR tree1 stack1 (λ t s → Lift n ⊤) → t) → t |
206 findPP key leaf st Pre next exit = exit leaf st Pre | 206 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre |
207 findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ | 207 findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ |
208 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st P | 208 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P |
209 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = | 209 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = |
210 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where | 210 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where |
211 tree0 = findPR.tree0 Pre | 211 tree0 = findPR.tree0 Pre |
212 findPP2 : (st : List (bt A)) → stackInvariant {!!} tree0 st → stackInvariant {!!} tree0 (node key₁ v tree tree₁ ∷ st) | 212 findPP2 : (st : List (bt A)) → stackInvariant {!!} tree0 st → stackInvariant {!!} tree0 (node key₁ v tree tree₁ ∷ st) |
213 findPP2 = {!!} | 213 findPP2 = {!!} |
220 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree | 220 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
221 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t | 221 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t |
222 insertTreePP {n} {m} {A} {t} tree key value P exit = | 222 insertTreePP {n} {m} {A} {t} tree key value P exit = |
223 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} | 223 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} |
224 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) | 224 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) |
225 $ λ t s P → replaceNodeP key value t {!!} | 225 $ λ t s _ P → replaceNodeP key value t {!!} |
226 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) | 226 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) |
227 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } | 227 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } |
228 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ | 228 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ |
229 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} | 229 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} |
230 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit | 230 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit |
240 | 240 |
241 findPPC : {n m : Level} {A : Set n} {t : Set m} | 241 findPPC : {n m : Level} {A : Set n} {t : Set m} |
242 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | 242 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) |
243 → (Pre : findPR tree stack findP-contains) | 243 → (Pre : findPR tree stack findP-contains) |
244 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → bt-depth tree1 < bt-depth tree → t ) | 244 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → bt-depth tree1 < bt-depth tree → t ) |
245 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → t) → t | 245 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR tree1 stack1 findP-contains → t) → t |
246 findPPC = {!!} | 246 findPPC = {!!} |
247 | 247 |
248 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ | 248 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ |
249 containsTree {n} {m} {A} {t} tree tree1 key value P RT = | 249 containsTree {n} {m} {A} {t} tree tree1 key value P RT = |
250 TerminatingLoopS (bt A ∧ List (bt A) ) | 250 TerminatingLoopS (bt A ∧ List (bt A) ) |
251 {λ p → findPR (proj1 p) (proj2 p) findP-contains } (λ p → bt-depth (proj1 p)) | 251 {λ p → findPR (proj1 p) (proj2 p) findP-contains } (λ p → bt-depth (proj1 p)) |
252 ⟪ tree1 , [] ⟫ {!!} | 252 ⟪ tree1 , [] ⟫ {!!} |
253 $ λ p P loop → findPPC key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) | 253 $ λ p P loop → findPPC key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) |
254 $ λ t1 s1 P2 → insertTreeSpec0 t1 value {!!} | 254 $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value {!!} where |
255 | 255 lemma3 : ? |
256 lemma3 = ? | |
257 |