Mercurial > hg > Gears > GearsAgda
diff hoareBinaryTree.agda @ 625:074fb29ebf57
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Nov 2021 22:30:40 +0900 |
parents | bf27e2c7c6c5 |
children | 6465673df5bc |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Mon Nov 08 21:36:28 2021 +0900 +++ b/hoareBinaryTree.agda Mon Nov 08 22:30:40 2021 +0900 @@ -202,10 +202,10 @@ → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) → (Pre : findPR tree stack (λ t s → Lift n ⊤)) → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → t) → t -findPP key leaf st Pre next exit = exit leaf st Pre + → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR tree1 stack1 (λ t s → Lift n ⊤) → t) → t +findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ -findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st P +findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where tree0 = findPR.tree0 Pre @@ -222,7 +222,7 @@ insertTreePP {n} {m} {A} {t} tree key value P exit = TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) - $ λ t s P → replaceNodeP key value t {!!} + $ λ t s _ P → replaceNodeP key value t {!!} $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ @@ -242,7 +242,7 @@ → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) → (Pre : findPR tree stack findP-contains) → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → t) → t + → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR tree1 stack1 findP-contains → t) → t findPPC = {!!} containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ @@ -251,5 +251,7 @@ {λ p → findPR (proj1 p) (proj2 p) findP-contains } (λ p → bt-depth (proj1 p)) ⟪ tree1 , [] ⟫ {!!} $ λ p P loop → findPPC key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) - $ λ t1 s1 P2 → insertTreeSpec0 t1 value {!!} + $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value {!!} where + lemma3 : ? + lemma3 = ?