Mercurial > hg > Gears > GearsAgda
diff stackTest.agda @ 537:fffeaf0b0024
add stackTest redBlackTreeTest
author | ryokka |
---|---|
date | Wed, 10 Jan 2018 15:44:13 +0900 |
parents | |
children | 5c001e8ba0d5 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/stackTest.agda Wed Jan 10 15:44:13 2018 +0900 @@ -0,0 +1,128 @@ +open import Level renaming (suc to succ ; zero to Zero ) +module stackTest where + +open import stack + +open import Relation.Binary.PropositionalEquality +open import Relation.Binary.Core +open import Data.Nat + + +open SingleLinkedStack +open Stack + +---- +-- +-- proof of properties ( concrete cases ) +-- + +test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n} +test01 stack _ with (top stack) +... | (Just _) = True +... | Nothing = False + + +test02 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Bool +test02 stack = popSingleLinkedStack stack test01 + +test03 : {n : Level } {a : Set n} -> a -> Bool +test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 + +-- after a push and a pop, the stack is empty +lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False +lemma = refl + +testStack01 : {n m : Level } {a : Set n} -> a -> Bool {m} +testStack01 v = pushStack createSingleLinkedStack v ( + \s -> popStack s (\s1 d1 -> True)) + +-- after push 1 and 2, pop2 get 1 and 2 + +testStack02 : {m : Level } -> ( Stack ℕ (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m} +testStack02 cs = pushStack createSingleLinkedStack 1 ( + \s -> pushStack s 2 cs) + + +testStack031 : (d1 d2 : ℕ ) -> Bool {Zero} +testStack031 2 1 = True +testStack031 _ _ = False + +testStack032 : (d1 d2 : Maybe ℕ) -> Bool {Zero} +testStack032 (Just d1) (Just d2) = testStack031 d1 d2 +testStack032 _ _ = False + +testStack03 : {m : Level } -> Stack ℕ (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m} +testStack03 s cs = pop2Stack s ( + \s d1 d2 -> cs d1 d2 ) + +testStack04 : Bool +testStack04 = testStack02 (\s -> testStack03 s testStack032) + +testStack05 : testStack04 ≡ True +testStack05 = refl + +------ +-- +-- proof of properties with indefinite state of stack +-- +-- this should be proved by properties of the stack inteface, not only by the implementation, +-- and the implementation have to provides the properties. +-- +-- we cannot write "s ≡ s3", since level of the Set does not fit , but use stack s ≡ stack s3 is ok. +-- anyway some implementations may result s != s3 +-- + +stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} D {t} ( SingleLinkedStack D ) +stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec } + +push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) -> + pushStack ( stackInSomeState s ) x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )) +push->push->pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl } + + +id : {n : Level} {A : Set n} -> A -> A +id a = a + +-- push a, n times + +n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A +n-push zero s = s +n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s -> s ) + +n-pop : {n : Level}{A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A +n-pop zero s = s +n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s ) + +open ≡-Reasoning + +push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> (popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ) ≡ s +push-pop-equiv s = refl + +push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {_} {A} {a} n s +push-and-n-pop zero s = refl +push-and-n-pop {_} {A} {a} (suc n) s = begin + n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) + ≡⟨ refl ⟩ + popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) + ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s )) (push-and-n-pop n s) ⟩ + popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s) + ≡⟨ refl ⟩ + n-pop {_} {A} {a} (suc n) s + ∎ + + +n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) ≡ s +n-push-pop-equiv zero s = refl +n-push-pop-equiv {_} {A} {a} (suc n) s = begin + n-pop {_} {A} {a} (suc n) (n-push (suc n) s) + ≡⟨ refl ⟩ + n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) + ≡⟨ push-and-n-pop n (n-push n s) ⟩ + n-pop {_} {A} {a} n (n-push n s) + ≡⟨ n-push-pop-equiv n s ⟩ + s + ∎ + + +n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} -> (n : ℕ) -> n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack +n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack