537
|
1 open import Level renaming (suc to succ ; zero to Zero )
|
|
2 module stackTest where
|
|
3
|
|
4 open import stack
|
|
5
|
|
6 open import Relation.Binary.PropositionalEquality
|
|
7 open import Relation.Binary.Core
|
|
8 open import Data.Nat
|
|
9
|
|
10
|
|
11 open SingleLinkedStack
|
|
12 open Stack
|
|
13
|
|
14 ----
|
|
15 --
|
|
16 -- proof of properties ( concrete cases )
|
|
17 --
|
|
18
|
|
19 test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n}
|
|
20 test01 stack _ with (top stack)
|
|
21 ... | (Just _) = True
|
|
22 ... | Nothing = False
|
|
23
|
|
24
|
|
25 test02 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Bool
|
|
26 test02 stack = popSingleLinkedStack stack test01
|
|
27
|
|
28 test03 : {n : Level } {a : Set n} -> a -> Bool
|
|
29 test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02
|
|
30
|
|
31 -- after a push and a pop, the stack is empty
|
|
32 lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False
|
|
33 lemma = refl
|
|
34
|
|
35 testStack01 : {n m : Level } {a : Set n} -> a -> Bool {m}
|
|
36 testStack01 v = pushStack createSingleLinkedStack v (
|
|
37 \s -> popStack s (\s1 d1 -> True))
|
|
38
|
|
39 -- after push 1 and 2, pop2 get 1 and 2
|
|
40
|
|
41 testStack02 : {m : Level } -> ( Stack ℕ (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m}
|
|
42 testStack02 cs = pushStack createSingleLinkedStack 1 (
|
|
43 \s -> pushStack s 2 cs)
|
|
44
|
|
45
|
|
46 testStack031 : (d1 d2 : ℕ ) -> Bool {Zero}
|
|
47 testStack031 2 1 = True
|
|
48 testStack031 _ _ = False
|
|
49
|
|
50 testStack032 : (d1 d2 : Maybe ℕ) -> Bool {Zero}
|
|
51 testStack032 (Just d1) (Just d2) = testStack031 d1 d2
|
|
52 testStack032 _ _ = False
|
|
53
|
|
54 testStack03 : {m : Level } -> Stack ℕ (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m}
|
|
55 testStack03 s cs = pop2Stack s (
|
|
56 \s d1 d2 -> cs d1 d2 )
|
|
57
|
|
58 testStack04 : Bool
|
|
59 testStack04 = testStack02 (\s -> testStack03 s testStack032)
|
|
60
|
|
61 testStack05 : testStack04 ≡ True
|
|
62 testStack05 = refl
|
|
63
|
|
64 ------
|
|
65 --
|
|
66 -- proof of properties with indefinite state of stack
|
|
67 --
|
|
68 -- this should be proved by properties of the stack inteface, not only by the implementation,
|
|
69 -- and the implementation have to provides the properties.
|
|
70 --
|
|
71 -- we cannot write "s ≡ s3", since level of the Set does not fit , but use stack s ≡ stack s3 is ok.
|
|
72 -- anyway some implementations may result s != s3
|
|
73 --
|
|
74
|
|
75 stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} D {t} ( SingleLinkedStack D )
|
|
76 stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec }
|
|
77
|
|
78 push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) ->
|
|
79 pushStack ( stackInSomeState s ) x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) ))
|
|
80 push->push->pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl }
|
|
81
|
|
82
|
|
83 id : {n : Level} {A : Set n} -> A -> A
|
|
84 id a = a
|
|
85
|
|
86 -- push a, n times
|
|
87
|
|
88 n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A
|
|
89 n-push zero s = s
|
|
90 n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s -> s )
|
|
91
|
|
92 n-pop : {n : Level}{A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A
|
|
93 n-pop zero s = s
|
|
94 n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s )
|
|
95
|
|
96 open ≡-Reasoning
|
|
97
|
|
98 push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> (popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ) ≡ s
|
|
99 push-pop-equiv s = refl
|
|
100
|
|
101 push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {_} {A} {a} n s
|
|
102 push-and-n-pop zero s = refl
|
|
103 push-and-n-pop {_} {A} {a} (suc n) s = begin
|
|
104 n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id)
|
|
105 ≡⟨ refl ⟩
|
|
106 popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s)
|
|
107 ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s )) (push-and-n-pop n s) ⟩
|
|
108 popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s)
|
|
109 ≡⟨ refl ⟩
|
|
110 n-pop {_} {A} {a} (suc n) s
|
|
111 ∎
|
|
112
|
|
113
|
|
114 n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) ≡ s
|
|
115 n-push-pop-equiv zero s = refl
|
|
116 n-push-pop-equiv {_} {A} {a} (suc n) s = begin
|
|
117 n-pop {_} {A} {a} (suc n) (n-push (suc n) s)
|
|
118 ≡⟨ refl ⟩
|
|
119 n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s))
|
|
120 ≡⟨ push-and-n-pop n (n-push n s) ⟩
|
|
121 n-pop {_} {A} {a} n (n-push n s)
|
|
122 ≡⟨ n-push-pop-equiv n s ⟩
|
|
123 s
|
|
124 ∎
|
|
125
|
|
126
|
|
127 n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} -> (n : ℕ) -> n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack
|
|
128 n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack
|