Mercurial > hg > Gears > GearsAgda
changeset 602:0dbbcab02864
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jun 2020 15:44:39 +0900 |
parents | 803c423c2855 |
children | 41e1c9e9718d |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 37 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Wed Mar 04 19:00:29 2020 +0900 +++ b/hoareBinaryTree1.agda Sun Jun 07 15:44:39 2020 +0900 @@ -19,13 +19,13 @@ data bt {n : Level} (A : Set n) : Set n where - bt-leaf : bt A + bt-empty : bt A bt-node : (key : ℕ) → A → (ltree : bt A) → (rtree : bt A) → bt A bt-find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A) → ( bt A → List (bt A) → t ) → t -bt-find {n} {m} {A} {t} key leaf@(bt-leaf) stack exit = exit leaf stack +bt-find {n} {m} {A} {t} key leaf@(bt-empty) stack exit = exit leaf stack bt-find {n} {m} {A} {t} key (bt-node key₁ AA tree tree₁) stack next with <-cmp key key₁ bt-find {n} {m} {A} {t} key node@(bt-node key₁ AA tree tree₁) stack exit | tri≈ ¬a b ¬c = exit node stack bt-find {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) stack next | tri< a ¬b ¬c = bt-find key ltree (node ∷ stack) next @@ -35,17 +35,15 @@ bt-replace {n} {m} {A} {t} ikey a otree stack next = bt-replace0 otree where bt-replace1 : bt A → List (bt A) → t bt-replace1 tree [] = next tree - bt-replace1 node ((bt-leaf) ∷ stack) = bt-replace1 node stack + bt-replace1 node ((bt-empty) ∷ stack) = bt-replace1 node stack bt-replace1 node ((bt-node key₁ b x x₁) ∷ stack) = bt-replace1 (bt-node key₁ b node x₁) stack bt-replace0 : (tree : bt A) → t bt-replace0 tree@(bt-node key _ ltr rtr) = bt-replace1 (bt-node ikey a ltr rtr) stack -- find case - bt-replace0 bt-leaf = bt-replace1 (bt-node ikey a bt-leaf bt-leaf) stack - + bt-replace0 bt-empty = bt-replace1 (bt-node ikey a bt-empty bt-empty) stack - -bt-empty : {n : Level} {A : Set n} → bt A -bt-empty = bt-leaf +bt-Empty : {n : Level} {A : Set n} → bt A +bt-Empty = bt-empty bt-insert : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → A → bt A → (bt A → t ) → t bt-insert key a tree next = bt-find key tree [] (λ mtree stack → bt-replace key a mtree stack (λ tree → next tree) ) @@ -60,13 +58,42 @@ insert-test1 : bt ℕ insert-test1 = bt-insert 5 7 bt-empty (λ x → bt-insert 15 17 x (λ y → y)) +insert-test2 : {n : Level} {t : Set n} → ( bt ℕ → t ) → t +insert-test2 next = bt-insert 15 17 bt-empty + $ λ x1 → bt-insert 5 7 x1 + $ λ x2 → bt-insert 1 3 x2 + $ λ x3 → bt-insert 4 2 x3 + $ λ x4 → bt-insert 1 4 x4 + $ λ y → next y + +insert-test3 : bt ℕ +insert-test3 = bt-insert 15 17 bt-empty + $ λ x1 → bt-insert 5 7 x1 + $ λ x2 → bt-insert 1 3 x2 + $ λ x3 → bt-insert 4 2 x3 + $ λ x4 → bt-insert 1 4 x4 + $ λ y → y + +insert-find0 : bt ℕ +insert-find0 = insert-test2 $ λ tree → bt-find 1 tree [] $ λ x y → x + +insert-find1 : List (bt ℕ) +insert-find1 = insert-test2 $ λ tree → bt-find 1 tree [] $ λ x y → y + +-- +-- 1 After insert, all node except inserted node is preserved +-- 2 After insert, specified key node is inserted +-- 3 tree node order is consistent +-- +-- 4 noes on stack + current node = original top node .... invriant bt-find +-- 5 noes on stack + current node = original top node with replaced node .... invriant bt-replace tree+stack0 : {n : Level} {A : Set n} → (tree mtree : bt A) → (stack : List (bt A)) → Set n tree+stack0 {n} {A} tree mtree [] = {!!} tree+stack0 {n} {A} tree mtree (x ∷ stack) = {!!} tree+stack : {n : Level} {A : Set n} → (tree mtree : bt A) → (stack : List (bt A)) → Set n -tree+stack {n} {A} bt-leaf mtree stack = (mtree ≡ bt-leaf) ∧ (stack ≡ []) +tree+stack {n} {A} bt-empty mtree stack = (mtree ≡ bt-empty) ∧ (stack ≡ []) tree+stack {n} {A} (bt-node key x tree tree₁) mtree stack = bt-replace key x mtree stack (λ ntree → ntree ≡ tree) data _implies_ (A B : Set ) : Set (succ Z) where @@ -79,7 +106,7 @@ bt-find-hoare1 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree mtree : bt A ) → (stack : List (bt A)) → (tree+stack tree mtree stack) → ( (ntree : bt A) → (nstack : List (bt A)) → (tree+stack tree ntree nstack) → t ) → t -bt-find-hoare1 {n} {m} {A} {t} key leaf@(bt-leaf) mtree stack t+s exit = exit leaf stack {!!} +bt-find-hoare1 {n} {m} {A} {t} key leaf@(bt-empty) mtree stack t+s exit = exit leaf stack {!!} bt-find-hoare1 {n} {m} {A} {t} key (bt-node key₁ AA tree tree₁) mtree stack t+s next with <-cmp key key₁ bt-find-hoare1 {n} {m} {A} {t} key node@(bt-node key₁ AA tree tree₁) mtree stack t+s exit | tri≈ ¬a b ¬c = exit node stack {!!} bt-find-hoare1 {n} {m} {A} {t} key node@(bt-node key₁ AA ltree rtree) mtree stack t+s next | tri< a ¬b ¬c = bt-find-hoare1 {n} {m} {A} {t} key ltree {!!} (node ∷ stack) {!!} {!!}