Mercurial > hg > Gears > GearsAgda
changeset 564:40ab3d39e49d
using strict total order
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 11 Apr 2018 11:29:57 +0900 |
parents | 8634f448e699 |
children | ba7c5f1c2937 |
files | RedBlackTree.agda redBlackTreeTest.agda |
diffstat | 2 files changed, 46 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/RedBlackTree.agda Fri Mar 30 11:09:06 2018 +0900 +++ b/RedBlackTree.agda Wed Apr 11 11:29:57 2018 +0900 @@ -2,6 +2,9 @@ open import stack open import Level hiding (zero) +open import Relation.Binary +open import Data.Nat.Properties as NatProp + record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field putImpl : treeImpl -> a -> (treeImpl -> t) -> t @@ -215,17 +218,28 @@ ... | equal _ = EQ ... | greater _ _ = GT +compareT : ℕ → ℕ → CompareResult {Level.zero} +compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder strictTotalOrder) x y +... | tri≈ _ _ _ = EQ +... | tri< _ _ _ = LT +... | tri> _ _ _ = GT + compare2 : (x y : ℕ ) -> CompareResult {Level.zero} compare2 zero zero = EQ compare2 (suc _) zero = GT compare2 zero (suc _) = LT compare2 (suc x) (suc y) = compare2 x y +putUnblanceTree : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → k → a → (RedBlackTree {n} {m} {t} a k → t) → t +putUnblanceTree {n} {m} {a} {k} {t} tree k1 value next with (root tree) +... | Nothing = next (record tree {root = Just (leafNode k1 value) }) +... | Just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode k1 value) n2 (λ tree1 s n1 → replaceNode tree1 s n1 next)) + createEmptyRedBlackTreeℕ : { m : Level } (a : Set Level.zero) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ createEmptyRedBlackTreeℕ {m} a {t} = record { root = Nothing ; nodeStack = emptySingleLinkedStack - ; compare = compare2 + ; compare = compareT }
--- a/redBlackTreeTest.agda Fri Mar 30 11:09:06 2018 +0900 +++ b/redBlackTreeTest.agda Wed Apr 11 11:29:57 2018 +0900 @@ -9,6 +9,11 @@ open import Data.Nat open import Relation.Nullary + +open import Algebra +open import Relation.Binary +open import Data.Nat.Properties as NatProp + open Tree open Node open RedBlackTree.RedBlackTree @@ -120,7 +125,7 @@ redBlackInSomeState :{ m : Level } (a : Set Level.zero) (n : Maybe (Node a ℕ)) {t : Set m} → RedBlackTree {Level.zero} {m} {t} a ℕ -redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compare2 } +redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compareT } -- compare2 : (x y : ℕ ) → CompareResult {Level.zero} -- compare2 zero zero = EQ @@ -242,34 +247,41 @@ lemma2 : compare2 (ℕ.suc x) (ℕ.suc y) ≡ compare2 x y lemma2 = refl +open IsStrictTotalOrder + +compTri : ( x y : ℕ ) -> Tri (x < y) ( x ≡ y ) ( x > y ) +compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder strictTotalOrder) + +checkT : {m : Level } (n : Maybe (Node ℕ ℕ)) → ℕ → Bool {m} +checkT Nothing _ = False +checkT (Just n) x with compTri (value n) x +... | tri≈ _ _ _ = True +... | _ = False + putTest1 :{ m : Level } (n : Maybe (Node ℕ ℕ)) → (k : ℕ) (x : ℕ) → putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x - (λ t → getRedBlackTree t k (λ t x1 → check2 x1 x ≡ True)) + (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)) putTest1 n k x with n ... | Just n1 = lemma2 ( record { top = Nothing } ) where - lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) → putTree1 (record { root = Just n1 ; nodeStack = s ; compare = compare2 }) k x (λ t → - GetRedBlackTree.checkNode t k (λ t₁ x1 → check2 x1 x ≡ True) (root t)) - lemma2 s with compare2 k (key n1) - ... | EQ = lemma3 {!!} + lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) → + putTree1 (record { root = Just n1 ; nodeStack = s ; compare = compareT }) k x (λ t → + GetRedBlackTree.checkNode t k (λ t₁ x1 → checkT x1 x ≡ True) (root t)) + lemma2 s with compTri k (key n1) + ... | tri≈ le eq gt = lemma3 where - lemma3 : compare2 k (key n1) ≡ EQ → getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { + lemma3 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = key n1 ; value = x ; right = right n1 ; left = left n1 ; color = Black - } ) ; nodeStack = s ; compare = λ x₁ y → compare2 x₁ y } ) k ( λ t x1 → check2 x1 x ≡ True) - lemma3 eq with compare2 x x | putTest1Lemma2 x - ... | EQ | refl with compare2 k (key n1) | eq - ... | EQ | refl with compare2 x x | putTest1Lemma2 x - ... | EQ | refl = refl - ... | GT = {!!} - ... | LT = {!!} + } ) ; nodeStack = s ; compare = λ x₁ y → compareT x₁ y } ) k ( λ t x1 → checkT x1 x ≡ True) + lemma3 = {!!} + ... | tri> le eq gt = {!!} + ... | tri< le eq gt = {!!} ... | Nothing = lemma1 where lemma1 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red - } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compare2 x₁ y } ) k - ( λ t x1 → check2 x1 x ≡ True) - lemma1 with compare2 k k | putTest1Lemma2 k - ... | EQ | refl with compare2 x x | putTest1Lemma2 x - ... | EQ | refl = refl + } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compareT x₁ y } ) k + ( λ t x1 → checkT x1 x ≡ True) + lemma1 = {!!}