Mercurial > hg > Gears > GearsAgda
changeset 723:43180a01bfbe
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 10 Apr 2023 10:43:00 +0900 |
parents | b088fa199d3d |
children | 35891ec243a0 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 51 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Sun Apr 09 17:15:42 2023 +0900 +++ b/hoareBinaryTree1.agda Mon Apr 10 10:43:00 2023 +0900 @@ -550,23 +550,55 @@ Red : Color Black : Color -data rbInvariant {n : Level} {A : Set n} : bt A → Color → ℕ → Set n where - rb-leaf : rbInvariant leaf Black 0 - rb-single : (key : ℕ) → (value : A) → (c : Color) → rbInvariant (node key value leaf leaf) c 1 - t-right-red : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → {d : ℕ } → rbInvariant (node key₁ value₁ t₁ t₂) Black d - → rbInvariant (node key value leaf (node key₁ value₁ t₁ t₂)) Red d - t-right-black : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → {c : Color} → {d : ℕ }→ rbInvariant (node key₁ value₁ t₁ t₂) c d - → rbInvariant (node key value leaf (node key₁ value₁ t₁ t₂)) Black (suc d) - t-left-red : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → {d : ℕ} → rbInvariant (node key value t₁ t₂) Black d - → rbInvariant (node key₁ value₁ (node key value t₁ t₂) leaf ) Red d - t-left-black : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → {c : Color} → {d : ℕ} → rbInvariant (node key value t₁ t₂) c d - → rbInvariant (node key₁ value₁ (node key value t₁ t₂) leaf ) Black (suc d) - t-node-red : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} {d : ℕ} - → rbInvariant (node key value t₁ t₂) Black d - → rbInvariant (node key₂ value₂ t₃ t₄) Black d - → rbInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) Red d - t-node-black : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} {c c1 : Color} {d : ℕ} - → rbInvariant (node key value t₁ t₂) c d - → rbInvariant (node key₂ value₂ t₃ t₄) c1 d - → rbInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) Black (suc d) +data RBTree {n : Level} (A : Set n) : (key : ℕ) → Color → (b-depth : ℕ) → Set n where + rb-leaf : (key : ℕ) → RBTree A key Black 0 + rb-single : (key : ℕ) → (value : A) → (c : Color) → RBTree A key c 1 + t-right-red : {key key₁ : ℕ} → (value : A) → key < key₁ → {d : ℕ } → RBTree A key₁ Black d → RBTree A key Red d + t-right-black : {key key₁ : ℕ} → (value : A) → key < key₁ → {c : Color} → {d : ℕ }→ RBTree A key₁ c d + → RBTree A key Black (suc d) + t-left-red : {key key₁ : ℕ} → (value : A) → key < key₁ → {d : ℕ} → RBTree A key Black d + → RBTree A key₁ Red d + t-left-black : {key key₁ : ℕ} → (value : A) → key < key₁ → {c : Color} → {d : ℕ} → RBTree A key c d + → RBTree A key₁ Black (suc d) + t-node-red : {key key₁ key₂ : ℕ} → (value : A) → key < key₁ → key₁ < key₂ → {d : ℕ} + → RBTree A key Black d + → RBTree A key₂ Black d + → RBTree A key₁ Red d + t-node-black : {key key₁ key₂ : ℕ} → (value : A) → key < key₁ → key₁ < key₂ → {c c1 : Color} {d : ℕ} + → RBTree A key c d + → RBTree A key₂ c1 d + → RBTree A key₁ Black (suc d) + +data rbstackInvariant {n : Level} {A : Set n} {key : ℕ} {c : Color} {d : ℕ} (orig : RBTree A key c d ) : (key₁ : ℕ ) → Set n where + s-single : rbstackInvariant orig key + s-right : {key₁ key₂ : ℕ} → {c1 : Color} {d1 : ℕ} → key₁ < key₂ → (top : RBTree A key₁ c1 d1) + → rbstackInvariant orig key₁ → rbstackInvariant orig key + s-left : {key₁ key₂ : ℕ} → {c1 : Color} {d1 : ℕ} → key₂ < key₁ → (top : RBTree A key₁ c1 d1) + → rbstackInvariant orig key₁ → rbstackInvariant orig key +RB→bt : {n : Level} (A : Set n) {key d : ℕ} {c : Color } → (rb : RBTree A key c d ) → bt A +RB→bt {n} A (rb-leaf _) = leaf +RB→bt {n} A (rb-single key value _) = node key value leaf leaf +RB→bt {n} A (t-right-red {key} value x rb) = node key value leaf (RB→bt A rb) +RB→bt {n} A (t-right-black {key} value x rb) = node key value leaf (RB→bt A rb) +RB→bt {n} A (t-left-red {_} {key} value x rb) = node key value (RB→bt A rb) leaf +RB→bt {n} A (t-left-black {_} {key} value x rb) = node key value (RB→bt A rb) leaf +RB→bt {n} A (t-node-red {_} {key} value x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) +RB→bt {n} A (t-node-black {_} {key} value x x₁ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) + +rbt-depth : ? +rbt-depth = ? + +rbt-key : ? +rbt-key = ? + + +findRBP : {n m : Level} {A : Set n} {t : Set m} → (key key1 d d1 : ℕ) → (c : Color) → (tree : RBTree A key c d ) (tree1 : RBTree A key1 ? d1 ) + → rbstackInvariant tree key1 + → (next : (key0 d0 : ℕ ) (tree1 : RBTree A key0 ? d0 ) → rbstackInvariant tree1 key0 → rbt-depth tree1 < rbt-depth tree → t ) + → (exit : (key0 d0 : ℕ) (tree0 : RBTree A key0 ? d0 ) → rbstackInvariant tree1 key0 + → (tree1 ≡ ? ) ∨ ( rbt-key tree1 ≡ just key ) → t ) → t +findRBP = ? + + +