Mercurial > hg > Gears > GearsAgda
changeset 623:753353a41da5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Nov 2021 21:07:41 +0900 |
parents | a1849f24fa66 |
children | bf27e2c7c6c5 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 14 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Mon Nov 08 20:54:09 2021 +0900 +++ b/hoareBinaryTree.agda Mon Nov 08 21:07:41 2021 +0900 @@ -191,35 +191,36 @@ insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ insertTreeSpec0 _ _ _ = tt -record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) : Set n where +record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where field tree0 : bt A ti : treeInvariant tree0 si : stackInvariant tree tree0 stack + ci : C tree stack findPP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) - → (Pre : findPR tree stack ) - → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 → t) → t -findPP key leaf st Pre next exit = exit leaf st Pre -findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ -findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st P -findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = - next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre)} ) findPP1 where + → (C : bt A → List (bt A) → Set n ) (Pre : findPR tree stack {!!} ) + → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 {!!} → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 {!!} → t) → t +findPP key leaf st C Pre next exit = exit leaf st Pre +findPP key (node key₁ v tree tree₁) st C Pre next exit with <-cmp key key₁ +findPP key n st C P next exit | tri≈ ¬a b ¬c = exit n st P +findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st C Pre next exit | tri< a ¬b ¬c = + next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = ?} ) findPP1 where tree0 = findPR.tree0 Pre findPP2 : (st : List (bt A)) → stackInvariant {!!} tree0 st → stackInvariant {!!} tree0 (node key₁ v tree tree₁ ∷ st) - findPP2 = ? + findPP2 = {!!} findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) findPP1 = {!!} -findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) +findPP key n@(node key₁ v tree tree₁) st C Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) findPP2 = {!!} insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t insertTreePP {n} {m} {A} {t} tree key value P exit = - TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} + TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) {!!} } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) $ λ t s P → replaceNodeP key value t {!!} $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) @@ -240,7 +241,7 @@ containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ containsTree {n} {m} {A} {t} tree tree1 key value P RT = TerminatingLoopS (bt A ∧ List (bt A) ) - {λ p → findPR (proj1 p) (proj2 p) ∧ findP-contains (proj1 p) (proj2 p)} (λ p → bt-depth (proj1 p)) + {λ p → findPR (proj1 p) (proj2 p) {!!} ∧ findP-contains (proj1 p) (proj2 p)} (λ p → bt-depth (proj1 p)) ⟪ tree1 , [] ⟫ ⟪ {!!} , record { key1 = key ; value1 = value ; tree1 = tree ; ci = RT ; R = record { tree0 = {!!} ; ti = P ; si = lift tt } } ⟫ $ λ p P loop → findPP key (proj1 p) (proj2 p) (proj1 P) (λ t s P1 lt → loop ⟪ t , s ⟫ ⟪ P1 , {!!} ⟫ lt ) $ λ t1 s1 P2 → insertTreeSpec0 t1 value {!!}