Mercurial > hg > Gears > GearsAgda
changeset 629:7a19d4b43795
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 09 Nov 2021 09:31:43 +0900 |
parents | ec2506b532ba |
children | 24bec7639079 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 17 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Mon Nov 08 23:44:24 2021 +0900 +++ b/hoareBinaryTree.agda Tue Nov 09 09:31:43 2021 +0900 @@ -229,26 +229,33 @@ $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit -record findP-contains {n : Level} {A : Set n} (key1 : ℕ) (value1 : A) (tree : bt A ) (stack : List (bt A)) : Set n where +record findPC {n : Level} {A : Set n} (key1 : ℕ) (value1 : A) (tree : bt A ) (stack : List (bt A)) : Set n where field tree1 : bt A ci : replacedTree key1 value1 tree tree1 findPPC : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A)) - → (Pre : findPR key tree stack (findP-contains key value)) - → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (findP-contains key value) → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (findP-contains key value) → t) → t -findPPC = {!!} + → (Pre : findPR key tree stack (findPC key value)) + → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (findPC key value) → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (findPC key value) → t) → t +findPPC key value leaf st Pre next exit = exit leaf st (case1 refl) Pre +findPPC key value (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁ +findPPC key value n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P +findPPC {_} {_} {A} key value n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c = + next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = {!!} ; ci = {!!} } ) {!!} +findPPC key value n st P next exit | tri> ¬a ¬b c = {!!} containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ containsTree {n} {m} {A} {t} tree tree1 key value P RT = TerminatingLoopS (bt A ∧ List (bt A) ) - {λ p → findPR key (proj1 p) (proj2 p) (findP-contains key value ) } (λ p → bt-depth (proj1 p)) + {λ p → findPR key (proj1 p) (proj2 p) (findPC key value ) } (λ p → bt-depth (proj1 p)) ⟪ tree1 , [] ⟫ {!!} $ λ p P loop → findPPC key value (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) - $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value (lemma7 {!!} (findPR.si P2 ) found? ) where - lemma7 : {key : ℕ } {value1 : A } {t1 tree : bt A } { s1 : List (bt A) } → - replacedTree key value1 tree t1 → stackInvariant key t1 tree s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value - lemma7 = {!!} + $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where + lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key value)) → top-value t1 ≡ just value + lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) ( findPC.ci (findPR.ci P2)) (findPR.si P2) found? where + lemma7 : (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A) → + replacedTree key value t1 tree1 → stackInvariant key t1 tree0 s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value + lemma7 = {!!}