Mercurial > hg > Gears > GearsAgda
changeset 553:7d9af1d4b5af
add compareTri
author | ryokka |
---|---|
date | Mon, 26 Mar 2018 17:50:04 +0900 |
parents | 5f4c5a663219 |
children | 988c12d7f887 |
files | Todo.txt redBlackTreeTest.agda |
diffstat | 2 files changed, 31 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/Todo.txt Thu Jan 18 10:38:55 2018 +0900 +++ b/Todo.txt Mon Mar 26 17:50:04 2018 +0900 @@ -1,3 +1,10 @@ +Mon Mar 26 17:43:06 JST 2018 + + Decidable を使って Compare の場合分けを行う + Decidable を使うと Eq から x ≡ y の証明を取り出すことができる + 場合分けには Trichotomous を使う + compareTri を完成させる + Fri Jan 5 16:43:26 JST 2018 unbalanced binary search tree の動作を調べる
--- a/redBlackTreeTest.agda Thu Jan 18 10:38:55 2018 +0900 +++ b/redBlackTreeTest.agda Mon Mar 26 17:50:04 2018 +0900 @@ -4,7 +4,10 @@ open import stack open import Level hiding (zero) +open import Data.Empty + open import Data.Nat +open import Relation.Nullary open Tree open Node @@ -125,6 +128,26 @@ -- compare2 zero (suc _) = LT -- compare2 (suc x) (suc y) = compare2 x y +compareTri1 : (n : ℕ) -> zero < ℕ.suc n +compareTri1 zero = {!!} +compareTri1 (suc n) = {!!} + +compareTri : Trichotomous _≡_ _<_ +compareTri zero zero = tri≈ (\()) refl (\()) +compareTri zero (suc n) = tri< {!!} (\()) (\()) +compareTri (suc n) zero = tri> (\()) (\()) {!!} +compareTri (suc n) (suc m) with compareTri n m +... | tri≈ p q r = tri≈ {!!} (cong (\x -> ℕ.suc x) q) {!!} +... | tri< p q r = tri< {!!} {!!} {!!} +... | tri> p q r = tri> {!!} {!!} {!!} + +compareDecTest : (n n1 : Node ℕ ℕ) -> key n ≡ key n1 +compareDecTest n n1 with (key n) ≟ (key n1) +... | yes p = p +... | no ¬p = {!!} + + + putTest1Lemma2 : (k : ℕ) -> compare2 k k ≡ EQ putTest1Lemma2 zero = refl putTest1Lemma2 (suc k) = putTest1Lemma2 k @@ -173,7 +196,7 @@ lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) -> putTree1 (record { root = Just n1 ; nodeStack = s ; compare = compare2 }) k x (λ t → GetRedBlackTree.checkNode t k (λ t₁ x1 → check2 x1 x ≡ True) (root t)) lemma2 s with compare2 k (key n1) - ... | EQ = lemma3 ? + ... | EQ = lemma3 {!!} where lemma3 : compare2 k (key n1) ≡ EQ -> getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = key n1 ; value = x ; right = right n1 ; left = left n1 ; color = Black