Mercurial > hg > Gears > GearsAgda
changeset 638:be6bd51c3f05
replaceTree
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 15 Nov 2021 15:34:30 +0900 |
parents | e30dcd03c07f |
children | 5fe23f540726 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 17 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Mon Nov 15 15:04:06 2021 +0900 +++ b/hoareBinaryTree.agda Mon Nov 15 15:34:30 2021 +0900 @@ -161,20 +161,28 @@ findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree tree0 stack → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack → t ) → t -findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre + → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack + → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t +findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre (case1 refl) findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁ -findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st Pre +findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl) findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st) ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a (proj2 Pre) ⟫ depth-1< where findP1 : key < key₁ → stackInvariant (node key₁ v1 tree tree₁) tree0 st → stackInvariant tree tree0 (tree ∷ st) findP1 a si = s-left si findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right (proj2 Pre) ⟫ depth-2< -replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (treeInvariant tree ) - → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t -replaceNodeP k v1 leaf P next = next (node k v1 leaf leaf) {!!} {!!} -replaceNodeP k v1 (node key value t t₁) P next = next (node k v1 t t₁) {!!} {!!} +replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) +replaceTree1 k v1 value (t-single .k .v1) = t-single k value +replaceTree1 k v1 value (t-right x t) = t-right x t +replaceTree1 k v1 value (t-left x t) = t-left x t +replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁ + +replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) + → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key ) + → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t +replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf +replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P) r-node replaceP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant repl tree stack ∧ replacedTree key value tree repl @@ -224,7 +232,7 @@ insertTreeP {n} {m} {A} {t} tree key value P exit = TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫ $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) - $ λ t _ s P → replaceNodeP key value t (proj1 P) + $ λ t _ s P C → replaceNodeP key value t C (proj1 P) $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫ @@ -269,7 +277,7 @@ insertTreePP {n} {m} {A} {t} tree key value P exit = TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) - $ λ t s _ P → replaceNodeP key value t {!!} + $ λ t s _ P → replaceNodeP key value t {!!} {!!} $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫