Mercurial > hg > GearsTemplate
changeset 540:0a723e418b2a
add some more directives in agda
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 04 Jan 2018 23:43:18 +0900 |
parents | c9f90f573efe |
children | b118ed3ba583 |
files | src/parallel_execution/RedBlackTree.agda |
diffstat | 1 files changed, 21 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/RedBlackTree.agda Thu Jan 04 23:15:32 2018 +0900 +++ b/src/parallel_execution/RedBlackTree.agda Thu Jan 04 23:43:18 2018 +0900 @@ -52,6 +52,7 @@ -- -- put new node at parent node, and rebuild tree to the top -- +{-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html replaceNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t replaceNode {n} {m} {t} {a} {k} {si} tree s parent n0 next = popStack s ( \s grandParent -> replaceNode1 s grandParent ( compare tree (key parent) (key n0) ) ) @@ -65,20 +66,34 @@ ... | GT = replaceNode tree s grandParent ( record parent { right = Just n0 } ) next ... | EQ = next tree -insertNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +rotateRight : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +rotateRight {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} + +rotateLeft : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +rotateLeft {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} + +insertCase5 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +insertCase5 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} + +insertCase4 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +insertCase4 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} + +{-# TERMINATING #-} +insertNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t insertNode {n} {m} {t} {a} {k} {si} tree s n0 next = get2Stack s (\ s d1 d2 -> insertCase1 s n0 d1 d2 ) where - insertCase1 : Stack (Node a k) si -> Node a k -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allo mutual recursion + insertCase1 : Stack (Node a k) si -> Node a k -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion + -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html insertCase3 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t insertCase3 s n0 parent grandParent with left grandParent | right grandParent - ... | Nothing | Nothing = {!!} -- insertCase4 - ... | Nothing | Just uncle = {!!} -- insertCase4 + ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next + ... | Nothing | Just uncle = insertCase4 tree s n0 parent grandParent next ... | Just uncle | _ with compare tree ( key uncle ) ( key parent ) - ... | EQ = {!!} -- insertCase4 + ... | EQ = insertCase4 tree s n0 parent grandParent next ... | _ with color uncle ... | Red = pop2Stack s ( \s p0 p1 -> insertCase1 s ( record grandParent { color = Red ; left = Just ( record parent { color = Black ; left = Just n0 } ) ; right = Just ( record uncle { color = Black } ) }) p0 p1 ) - ... | Black = {!!} -- insertCase4 + ... | Black = insertCase4 tree s n0 parent grandParent next insertCase2 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t insertCase2 s n0 parent grandParent with color parent ... | Black = replaceNode tree s grandParent n0 next