annotate hoareBinaryTree.agda @ 593:063274f64a77

bt-replace-hoare
author kono
date Sat, 07 Dec 2019 08:50:54 +0900
parents 7fb57243a8c9
children 4bbeb8d9e250
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
1 module hoareBinaryTree where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
2
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
3 open import Level renaming (zero to Z ; suc to succ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
4
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
5 open import Data.Nat hiding (compare)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
6 open import Data.Nat.Properties as NatProp
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
7 open import Data.Maybe
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
8 -- open import Data.Maybe.Properties
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
9 open import Data.Empty
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
10 open import Data.List
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
11 open import Data.Product
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
12
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
13 open import Function as F hiding (const)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
14
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
15 open import Relation.Binary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
16 open import Relation.Binary.PropositionalEquality
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
17 open import Relation.Nullary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
18 open import logic
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
19
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
20
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
21 SingleLinkedStack = List
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
22
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
23 emptySingleLinkedStack : {n : Level } {Data : Set n} -> SingleLinkedStack Data
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
24 emptySingleLinkedStack = []
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
25
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
26 clearSingleLinkedStack : {n m : Level } {Data : Set n} {t : Set m} -> SingleLinkedStack Data → ( SingleLinkedStack Data → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
27 clearSingleLinkedStack [] cg = cg []
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
28 clearSingleLinkedStack (x ∷ as) cg = cg []
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
29
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
30 pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> List Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
31 pushSingleLinkedStack stack datum next = next ( datum ∷ stack )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
32
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
33
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
34 popSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
35 popSingleLinkedStack [] cs = cs [] nothing
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
36 popSingleLinkedStack (data1 ∷ s) cs = cs s (just data1)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
37
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
38
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
39
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
40 emptySigmaStack : {n : Level } { Data : Set n} → List Data
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
41 emptySigmaStack = []
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
42
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
43 pushSigmaStack : {n m : Level} {d d2 : Set n} {t : Set m} → d2 → List d → (List (d × d2) → t) → t
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
44 pushSigmaStack {n} {m} {d} d2 st next = next (Data.List.zip (st) (d2 ∷ []) )
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
45
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
46 tt = pushSigmaStack 3 (true ∷ []) (λ st → st)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
47
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
48 _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
49 d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d))
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
50
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
51 iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
52 iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ }
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
53
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
54
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
55 {--
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
56 data A B : C → D → Set where の A B と C → D の差は?
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
57
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
58 --}
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
59
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
60 data bt {n : Level} {a : Set n} : Set n where -- (a : Setn)
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
61 bt-leaf : ⦃ l u : ℕ ⦄ → l ≤ u → bt
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
62 bt-node : ⦃ l l' u u' : ℕ ⦄ → (d : ℕ) →
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
63 bt {n} {a} → bt {n} {a} → l ≤ l' → u' ≤ u → bt
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
64
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
65 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
66 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
67 -- no children , having left node , having right node , having both
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
68 --
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
69 data bt' {n : Level} (A : Set n) : (key : ℕ) → Set n where -- (a : Setn)
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
70 bt'-leaf : (key : ℕ) → bt' A key
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
71 bt'-node : { l r : ℕ } → (key : ℕ) → (value : A) →
591
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 590
diff changeset
72 bt' {n} A l → bt' {n} A r → l ≤ key → key ≤ r → bt' A key
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
73
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
74 data bt'-path {n : Level} (A : Set n) : Set n where -- (a : Setn)
592
ryokka
parents: 591
diff changeset
75 bt'-left : (key : ℕ) → {left-key : ℕ} → (bt' A left-key ) → (key ≤ left-key) → bt'-path A
591
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 590
diff changeset
76 bt'-right : (key : ℕ) → {right-key : ℕ} → (bt' A right-key ) → (right-key ≤ key) → bt'-path A
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
77
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
78
593
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
79 test = bt'-left {Z} {ℕ} 3 {5} (bt'-leaf 5) (s≤s (s≤s (s≤s z≤n)))
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
80
589
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
81 bt-find' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (tree : bt' A tn ) → List (bt'-path A )
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
82 → ( {key1 : ℕ } → bt' A key1 → List (bt'-path A ) → t ) → t
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
83 bt-find' key tr@(bt'-leaf key₁) stack next = next tr stack -- no key found
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
84 bt-find' key (bt'-node key₁ value tree tree₁ x x₁) stack next with <-cmp key key₁
589
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
85 bt-find' key tr@(bt'-node {l} {r} key₁ value tree tree₁ x x₁) stack next | tri< a ¬b ¬c =
592
ryokka
parents: 591
diff changeset
86 bt-find' key tree ( (bt'-left key {key₁} tr (<⇒≤ a) ) ∷ stack) next
589
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
87 bt-find' key found@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri≈ ¬a b ¬c = next found stack
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
88 bt-find' key tr@(bt'-node key₁ value tree tree₁ x x₁) stack next | tri> ¬a ¬b c =
592
ryokka
parents: 591
diff changeset
89 bt-find' key tree ( (bt'-right key {key₁} tr (<⇒≤ c) ) ∷ stack) next
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
90
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
91 a<sa : { a : ℕ } → a < suc a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
92 a<sa {zero} = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
93 a<sa {suc a} = s≤s a<sa
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
94
592
ryokka
parents: 591
diff changeset
95 a≤sa : { a : ℕ } → a ≤ suc a
ryokka
parents: 591
diff changeset
96 a≤sa {zero} = z≤n
ryokka
parents: 591
diff changeset
97 a≤sa {suc a} = s≤s a≤sa
ryokka
parents: 591
diff changeset
98
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
99 pa<a : { a : ℕ } → pred (suc a) < suc a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
100 pa<a {zero} = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
101 pa<a {suc a} = s≤s pa<a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
102
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
103 bt-replace' : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (value : A ) → (tree : bt' A tn ) → List (bt'-path A )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
104 → ( {key1 : ℕ } → bt' A key1 → t ) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
105 bt-replace' {n} {m} {A} {t} {tn} key value node stack next = bt-replace1 tn node where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
106 bt-replace0 : {tn : ℕ } (node : bt' A tn ) → List (bt'-path A ) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
107 bt-replace0 node [] = next node
592
ryokka
parents: 591
diff changeset
108 bt-replace0 node (bt'-left key (bt'-leaf key₁) x₁ ∷ stack) = {!!}
ryokka
parents: 591
diff changeset
109 bt-replace0 {tn} node (bt'-left key (bt'-node key₁ value x x₂ x₃ x₄) x₁ ∷ stack) = bt-replace0 {key₁} (bt'-node key₁ value node x₂ {!!} x₄ ) stack
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
110 bt-replace0 node (bt'-right key x x₁ ∷ stack) = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
111 bt-replace1 : (tn : ℕ ) (tree : bt' A tn ) → t
591
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 590
diff changeset
112 bt-replace1 tn (bt'-leaf key0) = bt-replace0 (bt'-node tn value
592
ryokka
parents: 591
diff changeset
113 (bt'-leaf (pred tn)) (bt'-leaf (suc tn) ) (≤⇒pred≤ ≤-refl) a≤sa) stack
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
114 bt-replace1 tn (bt'-node key value node node₁ x x₁) = bt-replace0 (bt'-node key value node node₁ x x₁) stack
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
115
593
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
116 tree->key : {n : Level} {tn : ℕ} → (A : Set n) → (tree : bt' A tn ) → ℕ
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
117 tree->key {n} {.key} (A) (bt'-leaf key) = key
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
118 tree->key {n} {.key} (A) (bt'-node key value tree tree₁ x x₁) = key
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
119
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
120
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
121 bt-find'-assert1 : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (tree : bt' A tn ) → Set n
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
122 bt-find'-assert1 {n} {m} {A} {t} {tn} tree = (key : ℕ) → (val : A) → bt-find' key tree [] (λ tree1 stack → key ≡ (tree->key A tree1))
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
123
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
124
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
125 bt-replace-hoare : {n m : Level} {A : Set n} {t : Set m} {tn : ℕ} → (key : ℕ) → (value : A ) → (tree : bt' A tn )
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
126 → (pre : bt-find'-assert1 {n} {m} {A} {t} tree → bt-replace' {!!} {!!} {!!} {!!} {!!}) → t
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
127 bt-replace-hoare key value tree stack = {!!}
063274f64a77 bt-replace-hoare
kono
parents: 592
diff changeset
128
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
129
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
130
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
131 -- find'-support : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt' {n} {a} ) → SingleLinkedStack (bt' {n} {a} ) → ( (bt' {n} {a} ) → SingleLinkedStack (bt' {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
132
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
133 -- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key leaf@(bt'-leaf x) st cg = cg leaf st nothing
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
134 -- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt'-node d tree₁ tree₂ x x₁) st cg with <-cmp key d
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
135 -- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt'-node d tree₁ tree₂ x x₁) st cg | tri≈ ¬a b ¬c = cg node st (just (d , iso-intro {n} {a} ¬a ¬c))
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
136
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
137 -- find'-support {n} {m} {a} {t} key node@(bt'-node ⦃ nl ⦄ ⦃ l' ⦄ ⦃ nu ⦄ ⦃ u' ⦄ d L R x x₁) st cg | tri< a₁ ¬b ¬c =
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
138 -- pushSingleLinkedStack st node
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
139 -- (λ st2 → find'-support {n} {m} {a} {t} {{l'}} {{d}} key L st2 cg)
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
140
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
141 -- find'-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt'-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d L R x x₁) st cg | tri> ¬a ¬b c = pushSingleLinkedStack st node
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
142 -- (λ st2 → find'-support {n} {m} {a} {t} {{d}} {{lr'}} key R st2 cg)
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
143
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
144
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
145
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
146 lleaf : {n : Level} {a : Set n} → bt {n} {a}
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
147 lleaf = (bt-leaf ⦃ 0 ⦄ ⦃ 3 ⦄ z≤n)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
148
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
149 lleaf1 : {n : Level} {A : Set n} → (0 < 3) → (a : A) → (d : ℕ ) → bt' {n} A d
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
150 lleaf1 0<3 a d = bt'-leaf d
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
151
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
152 test-node1 : bt' ℕ 3
591
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 590
diff changeset
153 test-node1 = bt'-node (3) 3 (bt'-leaf 2) (bt'-leaf 4) (s≤s (s≤s {!!})) (s≤s (s≤s (s≤s {!!})))
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
154
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
155
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
156 rleaf : {n : Level} {a : Set n} → bt {n} {a}
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
157 rleaf = (bt-leaf ⦃ 3 ⦄ ⦃ 3 ⦄ (s≤s (s≤s (s≤s z≤n))))
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
158
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
159 test-node : {n : Level} {a : Set n} → bt {n} {a}
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
160 test-node {n} {a} = (bt-node ⦃ 0 ⦄ ⦃ 0 ⦄ ⦃ 4 ⦄ ⦃ 4 ⦄ 3 lleaf rleaf z≤n ≤-refl )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
161
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
162 -- stt : {n m : Level} {a : Set n} {t : Set m} → {!!}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
163 -- stt {n} {m} {a} {t} = pushSingleLinkedStack [] (test-node ) (λ st → pushSingleLinkedStack st lleaf (λ st2 → st2) )
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
164
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
165
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
166
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
167 -- search の {{ l }} {{ u }} はその時みている node の 大小。 l が小さく u が大きい
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
168 -- ここでは d が現在の node のkey値なので比較後のsearch では値が変わる
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
169 bt-search : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → bt {n} {a} → (Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
170 bt-search {n} {m} {a} {t} key (bt-leaf x) cg = cg nothing
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
171 bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ ll ⦄ ⦃ l' ⦄ ⦃ uu ⦄ ⦃ u' ⦄ d L R x x₁) cg with <-cmp key d
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
172 bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ ll ⦄ ⦃ l' ⦄ ⦃ uu ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri< a₁ ¬b ¬c = bt-search ⦃ l' ⦄ ⦃ d ⦄ key L cg
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
173 bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ ll ⦄ ⦃ l' ⦄ ⦃ uu ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri≈ ¬a b ¬c = cg (just (d , iso-intro {n} {a} ¬a ¬c))
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
174 bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ ll ⦄ ⦃ l' ⦄ ⦃ uu ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri> ¬a ¬b c = bt-search ⦃ d ⦄ ⦃ u' ⦄ key R cg
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
175
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
176 -- bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ l ⦄ ⦃ l' ⦄ ⦃ u ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri< a₁ ¬b ¬c = ? -- bt-search ⦃ l' ⦄ ⦃ d ⦄ key L cg
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
177 -- bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node d L R x x₁) cg | tri≈ ¬a b ¬c = cg (just (d , iso-intro {n} {a} ¬a ¬c))
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
178 -- bt-search {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node ⦃ l ⦄ ⦃ l' ⦄ ⦃ u ⦄ ⦃ u' ⦄ d L R x x₁) cg | tri> ¬a ¬b c = bt-search ⦃ d ⦄ ⦃ u' ⦄ key R cg
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
179
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
180
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
181 -- この辺の test を書くときは型を考えるのがやや面倒なので先に動作を書いてから型を ? から補間するとよさそう
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
182 bt-search-test : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (x : (x₁ : Maybe (Σ ℕ (λ z → ((x₂ : 4 ≤ z) → ⊥) ∧ ((x₂ : suc z ≤ 3) → ⊥)))) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
183 bt-search-test {n} {m} {a} {t} = bt-search {n} {m} {a} {t} ⦃ zero ⦄ ⦃ 4 ⦄ 3 test-node
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
184
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
185 bt-search-test-bad : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (x : (x₁ : Maybe (Σ ℕ (λ z → ((x₂ : 8 ≤ z) → ⊥) ∧ ((x₂ : suc z ≤ 7) → ⊥)))) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
186 bt-search-test-bad {n} {m} {a} {t} = bt-search {n} {m} {a} {t} ⦃ zero ⦄ ⦃ 4 ⦄ 7 test-node
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
187
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
188
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
189 -- up-some : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ {d : ℕ} → (Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d'))) → (Maybe ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
190 -- up-some (just (fst , snd)) = just fst
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
191 -- up-some nothing = nothing
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
192
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
193 search-lem : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (key : ℕ) → (tree : bt {n} {a} ) → bt-search ⦃ l ⦄ ⦃ u ⦄ key tree (λ gdata → gdata ≡ gdata)
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
194 search-lem {n} {m} {a} {t} key (bt-leaf x) = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
195 search-lem {n} {m} {a} {t} key (bt-node d tree₁ tree₂ x x₁) with <-cmp key d
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
196 search-lem {n} {m} {a} {t} key (bt-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d tree₁ tree₂ x x₁) | tri< lt ¬eq ¬gt = search-lem {n} {m} {a} {t} ⦃ ll' ⦄ ⦃ d ⦄ key tree₁
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
197 search-lem {n} {m} {a} {t} key (bt-node d tree₁ tree₂ x x₁) | tri≈ ¬lt eq ¬gt = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
198 search-lem {n} {m} {a} {t} key (bt-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d tree₁ tree₂ x x₁) | tri> ¬lt ¬eq gt = search-lem {n} {m} {a} {t} ⦃ d ⦄ ⦃ lr' ⦄ key tree₂
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
199
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
200
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
201 -- bt-find
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
202 find-support : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → ( (bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
203
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
204 find-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key leaf@(bt-leaf x) st cg = cg leaf st nothing
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
205 find-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key (bt-node d tree₁ tree₂ x x₁) st cg with <-cmp key d
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
206 find-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt-node d tree₁ tree₂ x x₁) st cg | tri≈ ¬a b ¬c = cg node st (just (d , iso-intro {n} {a} ¬a ¬c))
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
207
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
208 find-support {n} {m} {a} {t} key node@(bt-node ⦃ nl ⦄ ⦃ l' ⦄ ⦃ nu ⦄ ⦃ u' ⦄ d L R x x₁) st cg | tri< a₁ ¬b ¬c =
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
209 pushSingleLinkedStack st node
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
210 (λ st2 → find-support {n} {m} {a} {t} {{l'}} {{d}} key L st2 cg)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
211
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
212 find-support {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key node@(bt-node ⦃ ll ⦄ ⦃ ll' ⦄ ⦃ lr ⦄ ⦃ lr' ⦄ d L R x x₁) st cg | tri> ¬a ¬b c = pushSingleLinkedStack st node
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
213 (λ st2 → find-support {n} {m} {a} {t} {{d}} {{lr'}} key R st2 cg)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
214
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
215 bt-find : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → ( (bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → t ) → t
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
216 bt-find {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ key tr st cg = clearSingleLinkedStack st
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
217 (λ cst → find-support ⦃ l ⦄ ⦃ u ⦄ key tr cst cg)
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
218
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
219 find-test : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → List bt -- ?
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
220 find-test {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ = bt-find {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ 3 test-node [] (λ tt st ad → st)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
221 {-- result
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
222 λ {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ →
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
223 bt-node 3 (bt-leaf z≤n) (bt-leaf (s≤s (s≤s (s≤s z≤n)))) z≤n (s≤s (s≤s (s≤s (s≤s z≤n)))) ∷ []
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
224 --}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
225
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
226 find-lem : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a}) → (st : List (bt {n} {a})) → find-support {{l}} {{u}} d tree st (λ ta st ad → ta ≡ ta)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
227 find-lem d (bt-leaf x) st = refl
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
228 find-lem d (bt-node d₁ tree tree₁ x x₁) st with <-cmp d d₁
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
229 find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri≈ ¬a b ¬c = refl
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
230
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
231
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
232 find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri< a ¬b ¬c with tri< a ¬b ¬c
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
233 find-lem {n} {m} {a} {t} {{l}} {{u}} d (bt-node d₁ tree tree₁ x x₁) st | tri< lt ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = find-lem {n} {m} {a} {t} {{l}} {{u}} d tree {!!}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
234 find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = {!!}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
235 find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = {!!}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
236
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
237 find-lem d (bt-node d₁ tree tree₁ x x₁) st | tri> ¬a ¬b c = {!!}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
238
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
239 bt-singleton :{n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → ( (bt {n} {a} ) → t ) → t
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
240 bt-singleton {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ d cg = cg (bt-node ⦃ 0 ⦄ ⦃ 0 ⦄ ⦃ d ⦄ ⦃ d ⦄ d (bt-leaf ⦃ 0 ⦄ ⦃ d ⦄ z≤n ) (bt-leaf ⦃ d ⦄ ⦃ d ⦄ ≤-refl) z≤n ≤-refl)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
241
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
242
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
243 singleton-test : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → bt -- ?
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
244 singleton-test {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ = bt-singleton {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ 10 λ x → x
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
245
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
246
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
247 replace-helper : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (tree : bt {n} {a} ) → SingleLinkedStack (bt {n} {a} ) → ( (bt {n} {a} ) → t ) → t
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
248 replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tree [] cg = cg tree
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
249 replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tree@(bt-node d L R x₁ x₂) (bt-leaf x ∷ st) cg = replace-helper ⦃ l ⦄ ⦃ u ⦄ tree st cg -- Unknown Case
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
250 replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ (bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg with <-cmp d d₁
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
251 replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri< a₁ ¬b ¬c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ subt x₃ x₄ x₅) st cg
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
252 replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri≈ ¬a b ¬c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ subt x₃ x₄ x₅) st cg
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
253 replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ subt@(bt-node d tree tree₁ x₁ x₂) (bt-node d₁ x x₃ x₄ x₅ ∷ st) cg | tri> ¬a ¬b c = replace-helper ⦃ l ⦄ ⦃ u ⦄ (bt-node d₁ x₃ subt x₄ x₅) st cg
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
254 replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tree (x ∷ st) cg = replace-helper ⦃ l ⦄ ⦃ u ⦄ tree st cg -- Unknown Case
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
255
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
256
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
257
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
258 bt-replace : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
259 → (d : ℕ) → (bt {n} {a} ) → SingleLinkedStack (bt {n} {a} )
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
260 → Maybe (Σ ℕ (λ d' → _iso_ {n} {a} d d')) → ( (bt {n} {a} ) → t ) → t
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
261 bt-replace {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ d tree st eqP cg = replace-helper {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ ((bt-node ⦃ 0 ⦄ ⦃ 0 ⦄ ⦃ d ⦄ ⦃ d ⦄ d (bt-leaf ⦃ 0 ⦄ ⦃ d ⦄ z≤n ) (bt-leaf ⦃ d ⦄ ⦃ d ⦄ ≤-refl) z≤n ≤-refl)) st cg
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
262
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
263
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
264
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
265 -- 証明に insert がはいっててほしい
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
266 bt-insert : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a})
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
267 → ((bt {n} {a}) → t) → t
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
268
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
269 bt-insert {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ d tree cg = bt-find {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ d tree [] (λ tt st ad → bt-replace ⦃ l ⦄ ⦃ u ⦄ d tt st ad cg )
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
270
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
271 pickKey : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (tree : bt {n} {a}) → Maybe ℕ
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
272 pickKey (bt-leaf x) = nothing
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
273 pickKey (bt-node d tree tree₁ x x₁) = just d
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
274
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
275 insert-test : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → bt -- ?
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
276 insert-test {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ = bt-insert {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ 1 test-node λ x → x
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
277
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
278 insert-test-l : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → bt -- ?
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
279 insert-test-l {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ = bt-insert {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ 1 (lleaf) λ x → x
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
280
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
281
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
282 insert-lem : {n m : Level} {a : Set n} {t : Set m} ⦃ l u : ℕ ⦄ → (d : ℕ) → (tree : bt {n} {a})
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
283 → bt-insert {n} {_} {a} ⦃ l ⦄ ⦃ u ⦄ d tree (λ tree1 → bt-find ⦃ l ⦄ ⦃ u ⦄ d tree1 []
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
284 (λ tt st ad → (pickKey {n} {m} {a} {t} ⦃ l ⦄ ⦃ u ⦄ tt) ≡ just d ) )
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
285
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
286
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
287 insert-lem d (bt-leaf x) with <-cmp d d -- bt-insert d (bt-leaf x) (λ tree1 → {!!})
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
288 insert-lem d (bt-leaf x) | tri< a ¬b ¬c = ⊥-elim (¬b refl)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
289 insert-lem d (bt-leaf x) | tri≈ ¬a b ¬c = refl
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
290 insert-lem d (bt-leaf x) | tri> ¬a ¬b c = ⊥-elim (¬b refl)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
291 insert-lem d (bt-node d₁ tree tree₁ x x₁) with <-cmp d d₁
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
292 -- bt-insert d (bt-node d₁ tree tree₁ x x₁) (λ tree1 → {!!})
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
293 insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri≈ ¬a b ¬c with <-cmp d d
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
294 insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (¬b refl)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
295 insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = refl
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
296 insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (¬b refl)
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
297
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
298 insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri< a ¬b ¬c = {!!}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
299 where
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
300 lem-helper : find-support ⦃ {!!} ⦄ ⦃ {!!} ⦄ d tree (bt-node d₁ tree tree₁ x x₁ ∷ []) (λ tt₁ st ad → replace-helper ⦃ {!!} ⦄ ⦃ {!!} ⦄ (bt-node ⦃ {!!} ⦄ ⦃ {!!} ⦄ ⦃ {!!} ⦄ ⦃ {!!} ⦄ d (bt-leaf ⦃ 0 ⦄ ⦃ d ⦄ z≤n) (bt-leaf ⦃ {!!} ⦄ ⦃ {!!} ⦄ (≤-reflexive refl)) z≤n (≤-reflexive refl)) st (λ tree1 → find-support ⦃ {!!} ⦄ ⦃ {!!} ⦄ d tree1 [] (λ tt₂ st₁ ad₁ → pickKey {{!!}} {{!!}} {{!!}} {{!!}} ⦃ {!!} ⦄ ⦃ {!!} ⦄ tt₂ ≡ just d)))
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
301 lem-helper = {!!}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
302
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
303 insert-lem d (bt-node d₁ tree tree₁ x x₁) | tri> ¬a ¬b c = {!!}
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
304