annotate hoareBinaryTree.agda @ 626:6465673df5bc

connected
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 08 Nov 2021 22:45:19 +0900
parents 074fb29ebf57
children 967547859521
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
1 module hoareBinaryTree where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
2
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
3 open import Level renaming (zero to Z ; suc to succ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
4
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
5 open import Data.Nat hiding (compare)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
6 open import Data.Nat.Properties as NatProp
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
7 open import Data.Maybe
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
8 -- open import Data.Maybe.Properties
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
9 open import Data.Empty
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
10 open import Data.List
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
11 open import Data.Product
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
12
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
13 open import Function as F hiding (const)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
14
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
15 open import Relation.Binary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
16 open import Relation.Binary.PropositionalEquality
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
17 open import Relation.Nullary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
18 open import logic
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
19
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
20
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
21 _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
22 d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d))
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
23
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
24 iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
25 iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ }
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
26
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
27 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
28 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
29 -- no children , having left node , having right node , having both
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
30 --
597
ryokka
parents: 596
diff changeset
31 data bt {n : Level} (A : Set n) : Set n where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
32 leaf : bt A
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
33 node : (key : ℕ) → (value : A) →
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
34 (left : bt A ) → (right : bt A ) → bt A
600
016a8deed93d fix old binary tree
ryokka
parents: 597
diff changeset
35
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
36 node-key : {n : Level} {A : Set n} → bt A → Maybe ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
37 node-key (node key _ _ _) = just key
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
38 node-key _ = nothing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
39
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
40 node-value : {n : Level} {A : Set n} → bt A → Maybe A
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
41 node-value (node _ value _ _) = just value
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
42 node-value _ = nothing
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
43
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
44 bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
45 bt-depth leaf = 0
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
46 bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ ))
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
47
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
48 find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A)
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
49 → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
50 find key leaf st _ exit = exit leaf st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
51 find key (node key₁ v tree tree₁) st next exit with <-cmp key key₁
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
52 find key n st _ exit | tri≈ ¬a b ¬c = exit n st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
53 find key n@(node key₁ v tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st)
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
54 find key n@(node key₁ v tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st)
597
ryokka
parents: 596
diff changeset
55
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
56 {-# TERMINATING #-}
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
57 find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
58 find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
59 find-loop1 : bt A → List (bt A) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
60 find-loop1 tree st = find key tree st find-loop1 exit
600
016a8deed93d fix old binary tree
ryokka
parents: 597
diff changeset
61
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
62 replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
63 replaceNode k v leaf next = next (node k v leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
64 replaceNode k v (node key value t t₁) next = next (node k v t t₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
65
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
67 replace key value tree [] next exit = exit tree
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
68 replace key value tree (leaf ∷ st) next exit = next key value tree st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
69 replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
70 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
71 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
72 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
73
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
74 {-# TERMINATING #-}
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
75 replace-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (exit : bt A → t) → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
76 replace-loop {_} {_} {A} {t} key value tree st exit = replace-loop1 key value tree st where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
77 replace-loop1 : (key : ℕ) → (value : A) → bt A → List (bt A) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
78 replace-loop1 key value tree st = replace key value tree st replace-loop1 exit
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
79
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
80 insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
81 insertTree tree key value exit = find-loop key tree [] $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
82
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
83 insertTest1 = insertTree leaf 1 1 (λ x → x )
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
84 insertTest2 = insertTree insertTest1 2 1 (λ x → x )
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
85
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
86 open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_)
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
87
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
88 data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
89 t-leaf : treeInvariant leaf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
90 t-single : {key : ℕ} → {value : A} → treeInvariant (node key value leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
91 t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key₁ value₁ t₁ t₂) → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
92 t-left : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key₁ < key) → treeInvariant (node key value₁ t₁ t₂) → treeInvariant (node key₁ value₁ (node key value₁ t₁ t₂) leaf )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
93 t-node : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → (key < key₁) → (key₁ < key₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
94 → treeInvariant (node key value t₁ t₂)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
95 → treeInvariant (node key₂ value₂ t₃ t₄)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
96 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄))
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
97
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
98 treeInvariantTest1 : treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf)))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
99 treeInvariantTest1 = {!!}
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
100
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
101 data stackInvariant {n : Level} {A : Set n} : (tree tree0 : bt A) → (stack : List (bt A)) → Set n where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
102 s-nil : stackInvariant leaf leaf []
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
103 s-single : (tree : bt A) → stackInvariant tree tree (tree ∷ [] )
620
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 619
diff changeset
104 s-< : (tree0 tree : bt A) → {key : ℕ } → {value : A } { left : bt A} → {st : List (bt A)}
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
105 → stackInvariant (node key value left tree ) tree0 (node key value left tree ∷ st ) → stackInvariant tree tree0 (tree ∷ node key value left tree ∷ st )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
106 s-> : (tree0 tree : bt A) → {key : ℕ } → {value : A } { right : bt A} → {st : List (bt A)}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
107 → stackInvariant (node key value tree right ) tree0 (node key value tree right ∷ st ) → stackInvariant tree tree0 (tree ∷ node key value tree right ∷ st )
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
108
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
109 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
110 r-leaf : replacedTree key value leaf (node key value leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
111 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
112 r-right : {k : ℕ } {v : A} → {t t1 t2 : bt A}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
113 → k > key → ( replacedTree key value t1 t2 → replacedTree key value (node k v t t1) (node k v t t2) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
114 r-left : {k : ℕ } {v : A} → {t t1 t2 : bt A}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
115 → k < key → ( replacedTree key value t1 t2 → replacedTree key value (node k v t1 t) (node k v t2 t) )
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
116
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
117 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A))
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
118 → treeInvariant tree ∧ stackInvariant tree tree0 stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
119 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
120 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 tree0 stack → t ) → t
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
121 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
122 findP key (node key₁ v tree tree₁) tree0 st Pre next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
123 findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
124 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (n ∷ st) {!!} {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
125 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (n ∷ st) {!!} {!!}
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
126
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
127 replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (treeInvariant tree )
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
128 → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
129 replaceNodeP k v leaf P next = next (node k v leaf leaf) {!!} {!!}
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
130 replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!}
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
131
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
132 replaceP : {n m : Level} {A : Set n} {t : Set m}
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
133 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant repl tree stack ∧ replacedTree key value tree repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
134 → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant repl tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t )
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
135 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
136 replaceP key value tree repl [] Pre next exit = exit tree repl {!!}
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
137 replaceP key value tree repl (leaf ∷ st) Pre next exit = next key value tree {!!} st {!!} {!!}
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
138 replaceP key value tree repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
139 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) {!!} st {!!} {!!}
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
140 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) {!!} st {!!} {!!}
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
141 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) {!!} st {!!} {!!}
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
142
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
143 open import Relation.Binary.Definitions
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
144
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
145 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
146 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
147 lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
148 lemma3 refl ()
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
149 lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
150 lemma5 (s≤s z≤n) ()
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
151
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
152 TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
153 → (r : Index) → (p : Invraiant r)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
154 → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
155 TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
156 ... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
157 ... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
158 TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j → Invraiant r1 → reduce r1 < reduce r → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
159 TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1))
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
160 TerminatingLoop1 (suc j) r r1 n≤j p1 lt with <-cmp (reduce r1) (suc j)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
161 ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
162 ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
163 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
164
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
165 open _∧_
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
166
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
167 RTtoTI0 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
168 → replacedTree key value tree repl → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
169 RTtoTI0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
171 RTtoTI1 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
172 → replacedTree key value tree repl → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
173 RTtoTI1 = {!!}
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
174
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
175 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
176 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
177 insertTreeP {n} {m} {A} {t} tree key value P exit =
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
178 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
179 $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
180 $ λ t _ s P → replaceNodeP key value t (proj1 P)
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
181 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
182 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
183 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
184 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
185 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
186
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
187 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
188 top-value leaf = nothing
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
189 top-value (node key value tree tree₁) = just value
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
190
612
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
191 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
192 insertTreeSpec0 _ _ _ = tt
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
193
623
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 622
diff changeset
194 record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
195 field
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
196 tree0 : bt A
622
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 621
diff changeset
197 ti : treeInvariant tree0
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
198 si : stackInvariant tree tree0 stack
623
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 622
diff changeset
199 ci : C tree stack
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
200
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
201 findPP : {n m : Level} {A : Set n} {t : Set m}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
202 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A))
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
203 → (Pre : findPR tree stack (λ t s → Lift n ⊤))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
204 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t )
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
205 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR tree1 stack1 (λ t s → Lift n ⊤) → t) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
206 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
207 findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
208 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
209 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
210 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
211 tree0 = findPR.tree0 Pre
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
212 findPP2 : (st : List (bt A)) → stackInvariant {!!} tree0 st → stackInvariant {!!} tree0 (node key₁ v tree tree₁ ∷ st)
623
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 622
diff changeset
213 findPP2 = {!!}
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
214 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
215 findPP1 = {!!}
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
216 findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st)
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
217 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
218 findPP2 = {!!}
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
219
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
220 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
221 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
222 insertTreePP {n} {m} {A} {t} tree key value P exit =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
223 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!}
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
224 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt )
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
225 $ λ t s _ P → replaceNodeP key value t {!!}
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
226 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
227 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
228 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫
621
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
229 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 620
diff changeset
230 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
231
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
232 -- findP key tree stack = findPP key tree stack {findPR} → record { ti = tree-invariant tree ; si stack-invariant tree stack } →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
233
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
234 record findP-contains {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) : Set n where
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
235 field
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
236 key1 : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
237 value1 : A
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
238 tree1 : bt A
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
239 ci : replacedTree key1 value1 tree tree1
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
240
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
241 findPPC : {n m : Level} {A : Set n} {t : Set m}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
242 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
243 → (Pre : findPR tree stack findP-contains)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
244 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 findP-contains → bt-depth tree1 < bt-depth tree → t )
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
245 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR tree1 stack1 findP-contains → t) → t
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
246 findPPC = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
247
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
248 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
249 containsTree {n} {m} {A} {t} tree tree1 key value P RT =
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
250 TerminatingLoopS (bt A ∧ List (bt A) )
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
251 {λ p → findPR (proj1 p) (proj2 p) findP-contains } (λ p → bt-depth (proj1 p))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
252 ⟪ tree1 , [] ⟫ {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 623
diff changeset
253 $ λ p P loop → findPPC key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt )
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 624
diff changeset
254 $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value {!!} where
626
6465673df5bc connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
255 lemma7 : {key : ℕ } {value1 : A } {t1 tree : bt A } { s1 : List (bt A) } →
6465673df5bc connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
256 replacedTree key value1 tree t1 → stackInvariant t1 tree s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → node-key t1 ≡ just key
6465673df5bc connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
257 lemma7 {key} {value1} {.(node key value1 leaf leaf)} {leaf} r-leaf s (case1 ())
6465673df5bc connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
258 lemma7 {key} {value1} {.(node key value1 leaf leaf)} {leaf} r-leaf s (case2 x) = x
6465673df5bc connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
259 lemma7 {.key₁} {value1} {.(node key₁ value1 s1 s2)} {node key₁ value s1 s2} r-node s or = {!!}
6465673df5bc connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
260 lemma7 {key} {value1} {.(node key₁ value s1 _)} {node key₁ value s1 s2} (r-right x r) s or = {!!}
6465673df5bc connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 625
diff changeset
261 lemma7 {key} {value1} {.(node key₁ value _ s2)} {node key₁ value s1 s2} (r-left x r) s or = {!!}
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
262