Mercurial > hg > Members > Moririn
comparison RedBlackTree.agda @ 523:8fbc3ef749b6
separate Agda
author | ryokka |
---|---|
date | Fri, 05 Jan 2018 16:39:43 +0900 |
parents | src/parallel_execution/RedBlackTree.agda@f63a9a081b61 |
children | 0696b9846415 |
comparison
equal
deleted
inserted
replaced
522:f63a9a081b61 | 523:8fbc3ef749b6 |
---|---|
1 module RedBlackTree where | |
2 | |
3 open import stack | |
4 open import Level | |
5 | |
6 record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where | |
7 field | |
8 putImpl : treeImpl -> a -> (treeImpl -> t) -> t | |
9 getImpl : treeImpl -> (treeImpl -> Maybe a -> t) -> t | |
10 open TreeMethods | |
11 | |
12 record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where | |
13 field | |
14 tree : treeImpl | |
15 treeMethods : TreeMethods {n} {m} {a} {t} treeImpl | |
16 putTree : a -> (Tree treeImpl -> t) -> t | |
17 putTree d next = putImpl (treeMethods ) tree d (\t1 -> next (record {tree = t1 ; treeMethods = treeMethods} )) | |
18 getTree : (Tree treeImpl -> Maybe a -> t) -> t | |
19 getTree next = getImpl (treeMethods ) tree (\t1 d -> next (record {tree = t1 ; treeMethods = treeMethods} ) d ) | |
20 | |
21 open Tree | |
22 | |
23 data Color {n : Level } : Set n where | |
24 Red : Color | |
25 Black : Color | |
26 | |
27 data CompareResult {n : Level } : Set n where | |
28 LT : CompareResult | |
29 GT : CompareResult | |
30 EQ : CompareResult | |
31 | |
32 record Node {n : Level } (a k : Set n) : Set n where | |
33 inductive | |
34 field | |
35 key : k | |
36 value : a | |
37 right : Maybe (Node a k) | |
38 left : Maybe (Node a k) | |
39 color : Color {n} | |
40 open Node | |
41 | |
42 record RedBlackTree {n m : Level } {t : Set m} (a k si : Set n) : Set (m Level.⊔ n) where | |
43 field | |
44 root : Maybe (Node a k) | |
45 nodeStack : Stack {n} {m} (Node a k) {t} si | |
46 compare : k -> k -> CompareResult {n} | |
47 | |
48 open RedBlackTree | |
49 | |
50 open Stack | |
51 | |
52 -- | |
53 -- put new node at parent node, and rebuild tree to the top | |
54 -- | |
55 {-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html | |
56 replaceNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t | |
57 replaceNode {n} {m} {t} {a} {k} {si} tree s parent n0 next = popStack s ( | |
58 \s grandParent -> replaceNode1 s grandParent ( compare tree (key parent) (key n0) ) ) | |
59 where | |
60 replaceNode1 : Stack (Node a k) si -> Maybe ( Node a k ) -> CompareResult -> t | |
61 replaceNode1 s Nothing LT = next ( record tree { root = Just ( record parent { left = Just n0 ; color = Black } ) } ) | |
62 replaceNode1 s Nothing GT = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) | |
63 replaceNode1 s Nothing EQ = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) | |
64 replaceNode1 s (Just grandParent) result with result | |
65 ... | LT = replaceNode tree s grandParent ( record parent { left = Just n0 } ) next | |
66 ... | GT = replaceNode tree s grandParent ( record parent { right = Just n0 } ) next | |
67 ... | EQ = next tree | |
68 | |
69 rotateRight : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t | |
70 rotateRight {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} | |
71 | |
72 rotateLeft : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t | |
73 rotateLeft {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} | |
74 | |
75 insertCase5 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t | |
76 insertCase5 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} | |
77 | |
78 insertCase4 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t | |
79 insertCase4 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} | |
80 | |
81 {-# TERMINATING #-} | |
82 insertNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t | |
83 insertNode {n} {m} {t} {a} {k} {si} tree s n0 next = get2Stack s (\ s d1 d2 -> insertCase1 s n0 d1 d2 ) | |
84 where | |
85 insertCase1 : Stack (Node a k) si -> Node a k -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion | |
86 -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html | |
87 insertCase3 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t | |
88 insertCase3 s n0 parent grandParent with left grandParent | right grandParent | |
89 ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next | |
90 ... | Nothing | Just uncle = insertCase4 tree s n0 parent grandParent next | |
91 ... | Just uncle | _ with compare tree ( key uncle ) ( key parent ) | |
92 ... | EQ = insertCase4 tree s n0 parent grandParent next | |
93 ... | _ with color uncle | |
94 ... | Red = pop2Stack s ( \s p0 p1 -> insertCase1 s ( | |
95 record grandParent { color = Red ; left = Just ( record parent { color = Black ; left = Just n0 } ) ; right = Just ( record uncle { color = Black } ) }) p0 p1 ) | |
96 ... | Black = insertCase4 tree s n0 parent grandParent next | |
97 insertCase2 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t | |
98 insertCase2 s n0 parent grandParent with color parent | |
99 ... | Black = replaceNode tree s grandParent n0 next | |
100 ... | Red = insertCase3 s n0 parent grandParent | |
101 insertCase1 s n0 Nothing Nothing = next tree | |
102 insertCase1 s n0 Nothing (Just grandParent) = replaceNode tree s grandParent n0 next | |
103 insertCase1 s n0 (Just grandParent) Nothing = replaceNode tree s grandParent n0 next | |
104 insertCase1 s n0 (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent | |
105 where | |
106 | |
107 findNode : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> t) -> t | |
108 findNode {n} {m} {a} {k} {si} {t} tree s n0 n1 next = pushStack s n1 (\ s -> findNode1 s n1) | |
109 where | |
110 findNode2 : Stack (Node a k) si -> (Maybe (Node a k)) -> t | |
111 findNode2 s Nothing = next tree s n0 | |
112 findNode2 s (Just n) = findNode tree s n0 n next | |
113 findNode1 : Stack (Node a k) si -> (Node a k) -> t | |
114 findNode1 s n1 with (compare tree (key n0) (key n1)) | |
115 ... | EQ = next tree s n0 | |
116 ... | GT = findNode2 s (right n1) | |
117 ... | LT = findNode2 s (left n1) | |
118 | |
119 | |
120 leafNode : {n : Level } {a k : Set n} -> k -> a -> Node a k | |
121 leafNode k1 value = record { | |
122 key = k1 ; | |
123 value = value ; | |
124 right = Nothing ; | |
125 left = Nothing ; | |
126 color = Black | |
127 } | |
128 | |
129 putRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t | |
130 putRedBlackTree {n} {m} {a} {k} {si} {t} tree k1 value next with (root tree) | |
131 ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) | |
132 ... | Just n2 = findNode tree (nodeStack tree) (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next) | |
133 | |
134 getRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> (RedBlackTree {n} {m} {t} a k si -> (Maybe (Node a k)) -> t) -> t | |
135 getRedBlackTree {_} {_} {a} {k} {_} {t} tree k1 cs = checkNode (root tree) | |
136 where | |
137 checkNode : Maybe (Node a k) -> t | |
138 checkNode Nothing = cs tree Nothing | |
139 checkNode (Just n) = search n | |
140 where | |
141 search : Node a k -> t | |
142 search n with compare tree k1 (key n) | |
143 search n | LT = checkNode (left n) | |
144 search n | GT = checkNode (right n) | |
145 search n | EQ = cs tree (Just n) |