diff RedBlackTree.agda @ 575:73fc32092b64

push local rbtree
author ryokka
date Fri, 01 Nov 2019 17:42:51 +0900
parents a6aa2ff5fea4
children 0ddfa505d612
line wrap: on
line diff
--- a/RedBlackTree.agda	Thu Aug 16 18:22:08 2018 +0900
+++ b/RedBlackTree.agda	Fri Nov 01 17:42:51 2019 +0900
@@ -1,24 +1,33 @@
 module RedBlackTree where
 
+
+open import Level hiding (zero)
+
+open import Data.Nat hiding (compare)
+open import Data.Nat.Properties as NatProp
+open import Data.Maybe
+open import Data.Bool
+open import Data.Empty
+
+open import Relation.Binary
+open import Relation.Binary.PropositionalEquality
+
 open import stack
-open import Level hiding (zero)
-open import Relation.Binary
-open import Data.Nat.Properties   as NatProp
 
 record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
   field
-    putImpl : treeImpl -> a -> (treeImpl -> t) -> t
-    getImpl  : treeImpl -> (treeImpl -> Maybe a -> t) -> t
+    putImpl : treeImpl → a → (treeImpl → t) → t
+    getImpl  : treeImpl → (treeImpl → Maybe a → t) → t
 open TreeMethods
 
 record Tree  {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
   field
     tree : treeImpl
     treeMethods : TreeMethods {n} {m} {a} {t} treeImpl
-  putTree : a -> (Tree treeImpl -> t) -> t
-  putTree d next = putImpl (treeMethods ) tree d (\t1 -> next (record {tree = t1 ; treeMethods = treeMethods} ))
-  getTree : (Tree treeImpl -> Maybe a -> t) -> t
-  getTree next = getImpl (treeMethods ) tree (\t1 d -> next (record {tree = t1 ; treeMethods = treeMethods} ) d )
+  putTree : a → (Tree treeImpl → t) → t
+  putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} ))
+  getTree : (Tree treeImpl → Maybe a → t) → t
+  getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d )
 
 open Tree
 
@@ -26,220 +35,256 @@
   Red   : Color
   Black : Color
 
-data CompareResult {n : Level } : Set n where
-  LT : CompareResult
-  GT : CompareResult
-  EQ : CompareResult
 
-record Node {n : Level } (a k : Set n) : Set n where
+record Node {n : Level } (a : Set n) (k : ℕ) : Set n where
   inductive
   field
-    key   : k
+    key   : ℕ
     value : a
     right : Maybe (Node a k)
     left  : Maybe (Node a k)
     color : Color {n}
 open Node
 
-record RedBlackTree {n m : Level } {t : Set m} (a k : Set n) : Set (m Level.⊔ n) where
+record RedBlackTree {n m : Level } {t : Set m} (a : Set n) (k : ℕ) : Set (m Level.⊔ n) where
   field
     root : Maybe (Node a k)
     nodeStack : SingleLinkedStack  (Node a k)
-    compare : k -> k -> CompareResult {n}
+    -- compare : k → k → Tri A B C
 
 open RedBlackTree
 
 open SingleLinkedStack
 
---
+compTri : ( x y : ℕ ) ->  Tri ( x < y )  ( x ≡ y )  ( x > y )
+compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder)
+  where open import  Relation.Binary
+
 -- put new node at parent node, and rebuild tree to the top
 --
 {-# TERMINATING #-}   -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html
-replaceNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) ->  Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+replaceNode : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) →  Node a k → (RedBlackTree {n} {m} {t} a k → t) → t
 replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s (
-      \s parent -> replaceNode1 s parent)
+      \s parent → replaceNode1 s parent)
        module ReplaceNode where
-          replaceNode1 : SingleLinkedStack (Node a k) -> Maybe ( Node a k ) -> t 
-          replaceNode1 s Nothing = next ( record tree { root = Just (record n0 { color = Black}) } )
-          replaceNode1 s (Just n1) with compare tree (key n1) (key n0)
-          ... | EQ =  replaceNode tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next
-          ... | GT =  replaceNode tree s ( record n1 { left = Just n0 } ) next
-          ... | LT =  replaceNode tree s ( record n1 { right = Just n0 } ) next
+          replaceNode1 : SingleLinkedStack (Node a k) → Maybe ( Node a k ) → t
+          replaceNode1 s nothing = next ( record tree { root = just (record n0 { color = Black}) } )
+          replaceNode1 s (just n1) with compTri  (key n1) (key n0)
+          replaceNode1 s (just n1) | tri< lt ¬eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next
+          replaceNode1 s (just n1) | tri≈ ¬lt eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { left = just n0 } ) next
+          replaceNode1 s (just n1) | tri> ¬lt ¬eq gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { right = just n0 } ) next
 
 
-rotateRight : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) ->
-  (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t
-rotateRight {n} {m} {t} {a} {k}  tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 -> rotateRight1 tree s n0 parent rotateNext)
+rotateRight : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+  (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t
+rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext)
   where
-        rotateRight1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k)  -> Maybe (Node a k) -> Maybe (Node a k) -> 
-          (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k)  -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t
+        rotateRight1 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k)  → Maybe (Node a k) → Maybe (Node a k) →
+          (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k)  → Maybe (Node a k) → Maybe (Node a k) → t) → t
         rotateRight1 {n} {m} {t} {a} {k}  tree s n0 parent rotateNext with n0
-        ... | Nothing  = rotateNext tree s Nothing n0 
-        ... | Just n1 with parent
-        ...           | Nothing = rotateNext tree s (Just n1 ) n0
-        ...           | Just parent1 with left parent1
-        ...                | Nothing = rotateNext tree s (Just n1) Nothing 
-        ...                | Just leftParent with compare tree (key n1) (key leftParent)
-        ...                                    | EQ = rotateNext tree s (Just n1) parent 
-        ...                                    | _ = rotateNext tree s (Just n1) parent 
+        ... | nothing  = rotateNext tree s nothing n0
+        ... | just n1 with parent
+        ...           | nothing = rotateNext tree s (just n1 ) n0
+        ...           | just parent1 with left parent1
+        ...                | nothing = rotateNext tree s (just n1) nothing
+        ...                | just leftParent with compTri (key n1) (key leftParent)
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent
 
 
-rotateLeft : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) ->
-  (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) ->  t) -> t
-rotateLeft {n} {m} {t} {a} {k}  tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 -> rotateLeft1 tree s n0 parent rotateNext)
+rotateLeft : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+  (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →  t) → t
+rotateLeft {n} {m} {t} {a} {k}  tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateLeft1 tree s n0 parent rotateNext)
   where
-        rotateLeft1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) -> 
-          (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t
+        rotateLeft1 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+          (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t
         rotateLeft1 {n} {m} {t} {a} {k}  tree s n0 parent rotateNext with n0
-        ... | Nothing  = rotateNext tree s Nothing n0 
-        ... | Just n1 with parent
-        ...           | Nothing = rotateNext tree s (Just n1) Nothing 
-        ...           | Just parent1 with right parent1
-        ...                | Nothing = rotateNext tree s (Just n1) Nothing 
-        ...                | Just rightParent with compare tree (key n1) (key rightParent)
-        ...                                    | EQ = rotateNext tree s (Just n1) parent 
-        ...                                    | _ = rotateNext tree s (Just n1) parent 
+        ... | nothing  = rotateNext tree s nothing n0
+        ... | just n1 with parent
+        ...           | nothing = rotateNext tree s (just n1) nothing
+        ...           | just parent1 with right parent1
+        ...                | nothing = rotateNext tree s (just n1) nothing
+        ...                | just rightParent with compTri (key n1) (key rightParent)
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent
+        -- ...                                    | EQ = rotateNext tree s (just n1) parent
+        -- ...                                    | _ = rotateNext tree s (just n1) parent
 
 {-# TERMINATING #-}
-insertCase5 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
-insertCase5 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent -> insertCase51 tree s n0 parent grandParent next)
+insertCase5 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+insertCase5 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent → insertCase51 tree s n0 parent grandParent next)
   where
-    insertCase51 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+    insertCase51 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t}  a k → t) → t
     insertCase51 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next with n0
-    ...     | Nothing = next tree
-    ...     | Just n1  with  parent | grandParent
-    ...                 | Nothing | _  = next tree
-    ...                 | _ | Nothing  = next tree
-    ...                 | Just parent1 | Just grandParent1 with left parent1 | left grandParent1
-    ...                                                     | Nothing | _  = next tree
-    ...                                                     | _ | Nothing  = next tree
-    ...                                                     | Just leftParent1 | Just leftGrandParent1
-      with compare tree (key n1) (key leftParent1) | compare tree (key leftParent1) (key leftGrandParent1)
-    ...     | EQ | EQ = rotateRight tree s n0 parent 
-                 (\ tree s n0 parent -> insertCase5 tree s n0 parent1 grandParent1 next)
-    ...     | _ | _ = rotateLeft tree s n0 parent 
-                 (\ tree s n0 parent -> insertCase5 tree s n0 parent1 grandParent1 next)
+    ...     | nothing = next tree
+    ...     | just n1  with  parent | grandParent
+    ...                 | nothing | _  = next tree
+    ...                 | _ | nothing  = next tree
+    ...                 | just parent1 | just grandParent1 with left parent1 | left grandParent1
+    ...                                                     | nothing | _  = next tree
+    ...                                                     | _ | nothing  = next tree
+    ...                                                     | just leftParent1 | just leftGrandParent1
+      with compTri (key n1) (key leftParent1) | compTri (key leftParent1) (key leftGrandParent1)
+    ...    | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1  = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    ...    | _            | _                = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    -- ...     | EQ | EQ = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    -- ...     | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
 
-insertCase4 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+insertCase4 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
 insertCase4 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next
        with  (right parent) | (left grandParent)
-...    | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next
-...    | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next       
-...    | Just rightParent | Just leftGrandParent with compare tree (key n0) (key rightParent) | compare tree (key parent) (key leftGrandParent)
-...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 -> rotateLeft tree s (left n0) (Just grandParent)
-   (\ tree s n0 parent -> insertCase5 tree s n0 rightParent grandParent next))
-...                                              | _ | _  = insertCase41 tree s n0 parent grandParent next
+...    | nothing | _ = insertCase5 tree s (just n0) parent grandParent next
+...    | _ | nothing = insertCase5 tree s (just n0) parent grandParent next
+...    | just rightParent | just leftGrandParent with compTri (key n0) (key rightParent) | compTri (key parent) (key leftGrandParent) -- (key n0) (key rightParent) | (key parent) (key leftGrandParent)
+-- ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent)
+--    (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next))
+-- ...                                              | _ | _  = insertCase41 tree s n0 parent grandParent next
+...                                                 | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next))
+... | _            | _               = insertCase41 tree s n0 parent grandParent next
   where
-    insertCase41 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+    insertCase41 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
     insertCase41 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next
-                 with  (left parent) | (right grandParent)       
-    ...    | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next
-    ...    | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next
-    ...    | Just leftParent | Just rightGrandParent with compare tree (key n0) (key leftParent) | compare tree (key parent) (key rightGrandParent)
-    ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 -> rotateRight tree s (right n0) (Just grandParent)
-       (\ tree s n0 parent -> insertCase5 tree s n0 leftParent grandParent next))
-    ...                                              | _ | _  = insertCase5 tree s (Just n0) parent grandParent next
+                 with  (left parent) | (right grandParent)
+    ...    | nothing | _ = insertCase5 tree s (just n0) parent grandParent next
+    ...    | _ | nothing = insertCase5 tree s (just n0) parent grandParent next
+    ...    | just leftParent | just rightGrandParent with compTri (key n0) (key leftParent) | compTri (key parent) (key rightGrandParent)
+    ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 =  popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next))
+    ... | _ | _ = insertCase5 tree s (just n0) parent grandParent next
+    -- ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent)
+    --    (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next))
+    -- ...                                              | _ | _  = insertCase5 tree s (just n0) parent grandParent next
 
-colorNode : {n : Level } {a k : Set n}  -> Node a k -> Color  -> Node a k
+colorNode : {n : Level } {a : Set n} {k : ℕ} → Node a k → Color  → Node a k
 colorNode old c = record old { color = c }
 
 {-# TERMINATING #-}
-insertNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+insertNode : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
 insertNode {n} {m} {t} {a} {k}  tree s n0 next = get2SingleLinkedStack s (insertCase1 n0)
    where
-    insertCase1 : Node a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t    -- placed here to allow mutual recursion
+    insertCase1 : Node a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t    -- placed here to allow mutual recursion
           -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html
-    insertCase3 : SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> t
+    insertCase3 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t
     insertCase3 s n0 parent grandParent with left grandParent | right grandParent
-    ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next
-    ... | Nothing | Just uncle  = insertCase4 tree s n0 parent grandParent next
-    ... | Just uncle | _  with compare tree ( key uncle ) ( key parent )
-    ...                   | EQ =  insertCase4 tree s n0 parent grandParent next
-    ...                   | _ with color uncle
-    ...                           | Red = pop2SingleLinkedStack s ( \s p0 p1 -> insertCase1  (
-           record grandParent { color = Red ; left = Just ( record parent { color = Black } )  ; right = Just ( record uncle { color = Black } ) }) s p0 p1 )
-    ...                           | Black = insertCase4 tree s n0 parent grandParent next
-    insertCase2 : SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> t
+    ... | nothing | nothing = insertCase4 tree s n0 parent grandParent next
+    ... | nothing | just uncle  = insertCase4 tree s n0 parent grandParent next
+    ... | just uncle | _  with compTri ( key uncle ) ( key parent )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri≈ ¬a b ¬c = insertCase4 tree s n0 parent grandParent next
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c with color uncle
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  (
+           record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Black = insertCase4 tree s n0 parent grandParent next
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c with color uncle
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  ( record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Black = insertCase4 tree s n0 parent grandParent next
+    -- ...                   | EQ =  insertCase4 tree s n0 parent grandParent next
+    -- ...                   | _ with color uncle
+    -- ...                           | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  (
+    --        record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    -- ...                           | Black = insertCase4 tree s n0 parent grandParent next --!!
+    insertCase2 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t
     insertCase2 s n0 parent grandParent with color parent
     ... | Black = replaceNode tree s n0 next
     ... | Red =   insertCase3 s n0 parent grandParent
-    insertCase1 n0 s Nothing Nothing = next tree
-    insertCase1 n0 s Nothing (Just grandParent) = next tree
-    insertCase1 n0 s (Just parent) Nothing = replaceNode tree s (colorNode n0 Black) next
-    insertCase1 n0 s (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent
+    insertCase1 n0 s nothing nothing = next tree
+    insertCase1 n0 s nothing (just grandParent) = next tree
+    insertCase1 n0 s (just parent) nothing = replaceNode tree s (colorNode n0 Black) next
+    insertCase1 n0 s (just parent) (just grandParent) = insertCase2 s n0 parent grandParent
 
 ----
 -- find node potition to insert or to delete, the path will be in the stack
--- 
-findNode : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> t) -> t
-findNode {n} {m} {a} {k}  {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s -> findNode1 s n1)
+--
+findNode : {n m  : Level } {a : Set n} {k : ℕ} {t : Set m}  → RedBlackTree {n} {m} {t}   a k → SingleLinkedStack (Node a k) → (Node a k) → (Node a k) → (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → t) → t
+findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s → findNode1 s n1)
   module FindNode where
-    findNode2 : SingleLinkedStack (Node a k) -> (Maybe (Node a k)) -> t
-    findNode2 s Nothing = next tree s n0
-    findNode2 s (Just n) = findNode tree s n0 n next
-    findNode1 : SingleLinkedStack (Node a k) -> (Node a k)  -> t
-    findNode1 s n1 with (compare tree (key n0) (key n1))
-    ...                                | EQ = popSingleLinkedStack s ( \s _ -> next tree s (record n1 { key = key n1 ; value = value n0 } ) )
-    ...                                | GT = findNode2 s (right n1)
-    ...                                | LT = findNode2 s (left n1)
+    findNode2 : SingleLinkedStack (Node a k) → (Maybe (Node a k)) → t
+    findNode2 s nothing = next tree s n0
+    findNode2 s (just n) = findNode tree s n0 n next
+    findNode1 : SingleLinkedStack (Node a k) → (Node a k)  → t
+    findNode1 s n1 with (compTri (key n0) (key n1))
+    findNode1 s n1 | tri< a ¬b ¬c = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) )
+    findNode1 s n1 | tri≈ ¬a b ¬c = findNode2 s (right n1)
+    findNode1 s n1 | tri> ¬a ¬b c = findNode2 s (left n1)
+    -- ...                                | EQ = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) )
+    -- ...                                | GT = findNode2 s (right n1)
+    -- ...                                | LT = findNode2 s (left n1)
+
+
+
+
+leafNode : {n : Level } { a : Set n } → a → (k : ℕ) → (Node a k)
+leafNode v k1 = record { key = k1 ; value = v ; right = nothing ; left = nothing ; color = Red }
+
+putRedBlackTree : {n m : Level} {t : Set m} {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → {!!} → {!!} → (RedBlackTree {n} {m} {t} a k → t) → t
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next with (root tree)
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | nothing = next (record tree {root = just (leafNode {!!} {!!}) })
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode {!!} {!!}) n2 (λ tree1 s n1 → insertNode tree1 s n1 next))
+-- putRedBlackTree {n} {m} {t} {a} {k} tree value k1 next with (root tree)
+-- ...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+-- ...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (\ s → findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 → insertNode tree1 s n1 next))
+
+
+-- getRedBlackTree : {n m  : Level } {t : Set m}  {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} {A}  a k → k → (RedBlackTree {n} {m} {t} {A}  a k → (Maybe (Node a k)) → t) → t
+-- getRedBlackTree {_} {_} {t}  {a} {k} tree k1 cs = checkNode (root tree)
+--   module GetRedBlackTree where                     -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html
+--     search : Node a k → t
+--     checkNode : Maybe (Node a k) → t
+--     checkNode nothing = cs tree nothing
+--     checkNode (just n) = search n
+--     search n with compTri k1 (key n)
+--     search n | tri< a ¬b ¬c = checkNode (left n)
+--     search n | tri≈ ¬a b ¬c = cs tree (just n)
+--     search n | tri> ¬a ¬b c = checkNode (right n)
+
 
 
-leafNode : {n : Level } {a k : Set n}  -> k -> a -> Node a k
-leafNode k1 value = record {
-    key   = k1 ;
-    value = value ;
-    right = Nothing ;
-    left  = Nothing ;
-    color = Red
-  }
+-- compareT :  {A B C : Set } → ℕ → ℕ → Tri A B C
+-- compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) x y
+-- compareT x y | tri< a ¬b ¬c = tri< {!!} {!!} {!!}
+-- compareT x y | tri≈ ¬a b ¬c = {!!}
+-- compareT x y | tri> ¬a ¬b c = {!!}
+-- -- ... | tri≈ a b c = {!!}
+-- -- ... | tri< a b c = {!!}
+-- -- ... | tri> a b c = {!!}
 
-putRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> a -> (RedBlackTree {n} {m} {t} a k -> t) -> t
-putRedBlackTree {n} {m} {a} {k}  {t} tree k1 value next with (root tree)
-...                                | Nothing = next (record tree {root = Just (leafNode k1 value) })
-...                                | Just n2  = clearSingleLinkedStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next))
+-- compare2 : (x y : ℕ ) → CompareResult {Level.zero}
+-- compare2 zero zero = EQ
+-- compare2 (suc _) zero = GT
+-- compare2  zero (suc _) = LT
+-- compare2  (suc x) (suc y) = compare2 x y
 
-getRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> (RedBlackTree {n} {m} {t} a k -> (Maybe (Node a k)) -> t) -> t
-getRedBlackTree {_} {_} {a} {k} {t} tree k1 cs = checkNode (root tree)
-  module GetRedBlackTree where                     -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html
-    search : Node a k -> t
-    checkNode : Maybe (Node a k) -> t
-    checkNode Nothing = cs tree Nothing
-    checkNode (Just n) = search n
-    search n with compare tree k1 (key n) 
-    search n | LT = checkNode (left n)
-    search n | GT = checkNode (right n)
-    search n | EQ = cs tree (Just n)
-
-open import Data.Nat hiding (compare)
+-- -- putUnblanceTree : {n m : Level } {a : Set n} {k : ℕ} {t : Set m} → RedBlackTree {n} {m} {t} {A}  a k → k → a → (RedBlackTree {n} {m} {t} {A}  a k → t) → t
+-- -- putUnblanceTree {n} {m} {A} {a} {k} {t} tree k1 value next with (root tree)
+-- -- ...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+-- -- ...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (λ  s → findNode tree s (leafNode k1 value) n2 (λ  tree1 s n1 → replaceNode tree1 s n1 next))
 
-compareℕ :  ℕ → ℕ → CompareResult {Level.zero}
-compareℕ x y with Data.Nat.compare x y
-... | less _ _ = LT
-... | equal _ = EQ
-... | greater _ _ = GT
+-- -- checkT : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool
+-- -- checkT nothing _ = false
+-- -- checkT (just n) x with compTri (value n)  x
+-- -- ...  | tri≈ _ _ _ = true
+-- -- ...  | _ = false
 
-compareT :  ℕ → ℕ → CompareResult {Level.zero}
-compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder strictTotalOrder) x y
-... | tri≈ _ _ _ = EQ
-... | tri< _ _ _ = LT
-... | tri> _ _ _ = GT
-
-compare2 : (x y : ℕ ) -> CompareResult {Level.zero}
-compare2 zero zero = EQ
-compare2 (suc _) zero = GT
-compare2  zero (suc _) = LT
-compare2  (suc x) (suc y) = compare2 x y
-
-putUnblanceTree : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → k → a → (RedBlackTree {n} {m} {t} a k → t) → t
-putUnblanceTree {n} {m} {a} {k} {t} tree k1 value next with (root tree)
-...                                | Nothing = next (record tree {root = Just (leafNode k1 value) })
-...                                | Just n2  = clearSingleLinkedStack (nodeStack tree) (λ  s → findNode tree s (leafNode k1 value) n2 (λ  tree1 s n1 → replaceNode tree1 s n1 next))
+-- -- checkEQ :  {m : Level }  ( x :  ℕ ) -> ( n : Node  ℕ ℕ ) -> (value n )  ≡ x  -> checkT {m} (just n) x ≡ true
+-- -- checkEQ x n refl with compTri (value n)  x
+-- -- ... |  tri≈ _ refl _ = refl
+-- -- ... |  tri> _ neq gt =  ⊥-elim (neq refl)
+-- -- ... |  tri< lt neq _ =  ⊥-elim (neq refl)
 
 
-createEmptyRedBlackTreeℕ : { m : Level } (a : Set Level.zero) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ 
-createEmptyRedBlackTreeℕ  {m} a {t} = record {
-        root = Nothing
+createEmptyRedBlackTreeℕ : {n m  : Level} {t : Set m} (a : Set n) (b : ℕ)
+     → RedBlackTree {n} {m} {t} a b
+createEmptyRedBlackTreeℕ a b = record {
+        root = nothing
      ;  nodeStack = emptySingleLinkedStack
-     ;  compare = compareT
+     -- ;  nodeComp = λ x x₁ → {!!}
+
    }
- 
+
+-- ( x y : ℕ ) ->  Tri  ( x < y )  ( x ≡ y )  ( x > y )
+
+-- test = (λ x → (createEmptyRedBlackTreeℕ x x) 
+
+ts = createEmptyRedBlackTreeℕ {ℕ} {?} {!!} 0
+
+-- tes = putRedBlackTree {_} {_} {_} (createEmptyRedBlackTreeℕ {_} {_} {_} 3 3) 2 2 (λ t → t)