changeset 575:73fc32092b64

push local rbtree
author ryokka
date Fri, 01 Nov 2019 17:42:51 +0900 (2019-11-01)
parents 70b09cbefd45
children 40d01b368e34
files RedBlackTree.agda Todo.txt redBlackTreeHoare.agda redBlackTreeTest.agda stack.agda
diffstat 5 files changed, 846 insertions(+), 343 deletions(-) [+]
line wrap: on
line diff
--- a/RedBlackTree.agda	Thu Aug 16 18:22:08 2018 +0900
+++ b/RedBlackTree.agda	Fri Nov 01 17:42:51 2019 +0900
@@ -1,24 +1,33 @@
 module RedBlackTree where
 
+
+open import Level hiding (zero)
+
+open import Data.Nat hiding (compare)
+open import Data.Nat.Properties as NatProp
+open import Data.Maybe
+open import Data.Bool
+open import Data.Empty
+
+open import Relation.Binary
+open import Relation.Binary.PropositionalEquality
+
 open import stack
-open import Level hiding (zero)
-open import Relation.Binary
-open import Data.Nat.Properties   as NatProp
 
 record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
   field
-    putImpl : treeImpl -> a -> (treeImpl -> t) -> t
-    getImpl  : treeImpl -> (treeImpl -> Maybe a -> t) -> t
+    putImpl : treeImpl → a → (treeImpl → t) → t
+    getImpl  : treeImpl → (treeImpl → Maybe a → t) → t
 open TreeMethods
 
 record Tree  {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
   field
     tree : treeImpl
     treeMethods : TreeMethods {n} {m} {a} {t} treeImpl
-  putTree : a -> (Tree treeImpl -> t) -> t
-  putTree d next = putImpl (treeMethods ) tree d (\t1 -> next (record {tree = t1 ; treeMethods = treeMethods} ))
-  getTree : (Tree treeImpl -> Maybe a -> t) -> t
-  getTree next = getImpl (treeMethods ) tree (\t1 d -> next (record {tree = t1 ; treeMethods = treeMethods} ) d )
+  putTree : a → (Tree treeImpl → t) → t
+  putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} ))
+  getTree : (Tree treeImpl → Maybe a → t) → t
+  getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d )
 
 open Tree
 
@@ -26,220 +35,256 @@
   Red   : Color
   Black : Color
 
-data CompareResult {n : Level } : Set n where
-  LT : CompareResult
-  GT : CompareResult
-  EQ : CompareResult
 
-record Node {n : Level } (a k : Set n) : Set n where
+record Node {n : Level } (a : Set n) (k : ℕ) : Set n where
   inductive
   field
-    key   : k
+    key   : ℕ
     value : a
     right : Maybe (Node a k)
     left  : Maybe (Node a k)
     color : Color {n}
 open Node
 
-record RedBlackTree {n m : Level } {t : Set m} (a k : Set n) : Set (m Level.⊔ n) where
+record RedBlackTree {n m : Level } {t : Set m} (a : Set n) (k : ℕ) : Set (m Level.⊔ n) where
   field
     root : Maybe (Node a k)
     nodeStack : SingleLinkedStack  (Node a k)
-    compare : k -> k -> CompareResult {n}
+    -- compare : k → k → Tri A B C
 
 open RedBlackTree
 
 open SingleLinkedStack
 
---
+compTri : ( x y : ℕ ) ->  Tri ( x < y )  ( x ≡ y )  ( x > y )
+compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder)
+  where open import  Relation.Binary
+
 -- put new node at parent node, and rebuild tree to the top
 --
 {-# TERMINATING #-}   -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html
-replaceNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) ->  Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+replaceNode : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) →  Node a k → (RedBlackTree {n} {m} {t} a k → t) → t
 replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s (
-      \s parent -> replaceNode1 s parent)
+      \s parent → replaceNode1 s parent)
        module ReplaceNode where
-          replaceNode1 : SingleLinkedStack (Node a k) -> Maybe ( Node a k ) -> t 
-          replaceNode1 s Nothing = next ( record tree { root = Just (record n0 { color = Black}) } )
-          replaceNode1 s (Just n1) with compare tree (key n1) (key n0)
-          ... | EQ =  replaceNode tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next
-          ... | GT =  replaceNode tree s ( record n1 { left = Just n0 } ) next
-          ... | LT =  replaceNode tree s ( record n1 { right = Just n0 } ) next
+          replaceNode1 : SingleLinkedStack (Node a k) → Maybe ( Node a k ) → t
+          replaceNode1 s nothing = next ( record tree { root = just (record n0 { color = Black}) } )
+          replaceNode1 s (just n1) with compTri  (key n1) (key n0)
+          replaceNode1 s (just n1) | tri< lt ¬eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next
+          replaceNode1 s (just n1) | tri≈ ¬lt eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { left = just n0 } ) next
+          replaceNode1 s (just n1) | tri> ¬lt ¬eq gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { right = just n0 } ) next
 
 
-rotateRight : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) ->
-  (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t
-rotateRight {n} {m} {t} {a} {k}  tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 -> rotateRight1 tree s n0 parent rotateNext)
+rotateRight : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+  (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t
+rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext)
   where
-        rotateRight1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k)  -> Maybe (Node a k) -> Maybe (Node a k) -> 
-          (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k)  -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t
+        rotateRight1 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k)  → Maybe (Node a k) → Maybe (Node a k) →
+          (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k)  → Maybe (Node a k) → Maybe (Node a k) → t) → t
         rotateRight1 {n} {m} {t} {a} {k}  tree s n0 parent rotateNext with n0
-        ... | Nothing  = rotateNext tree s Nothing n0 
-        ... | Just n1 with parent
-        ...           | Nothing = rotateNext tree s (Just n1 ) n0
-        ...           | Just parent1 with left parent1
-        ...                | Nothing = rotateNext tree s (Just n1) Nothing 
-        ...                | Just leftParent with compare tree (key n1) (key leftParent)
-        ...                                    | EQ = rotateNext tree s (Just n1) parent 
-        ...                                    | _ = rotateNext tree s (Just n1) parent 
+        ... | nothing  = rotateNext tree s nothing n0
+        ... | just n1 with parent
+        ...           | nothing = rotateNext tree s (just n1 ) n0
+        ...           | just parent1 with left parent1
+        ...                | nothing = rotateNext tree s (just n1) nothing
+        ...                | just leftParent with compTri (key n1) (key leftParent)
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent
 
 
-rotateLeft : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) ->
-  (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) ->  t) -> t
-rotateLeft {n} {m} {t} {a} {k}  tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 -> rotateLeft1 tree s n0 parent rotateNext)
+rotateLeft : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+  (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →  t) → t
+rotateLeft {n} {m} {t} {a} {k}  tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateLeft1 tree s n0 parent rotateNext)
   where
-        rotateLeft1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) -> 
-          (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node  a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t
+        rotateLeft1 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+          (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t
         rotateLeft1 {n} {m} {t} {a} {k}  tree s n0 parent rotateNext with n0
-        ... | Nothing  = rotateNext tree s Nothing n0 
-        ... | Just n1 with parent
-        ...           | Nothing = rotateNext tree s (Just n1) Nothing 
-        ...           | Just parent1 with right parent1
-        ...                | Nothing = rotateNext tree s (Just n1) Nothing 
-        ...                | Just rightParent with compare tree (key n1) (key rightParent)
-        ...                                    | EQ = rotateNext tree s (Just n1) parent 
-        ...                                    | _ = rotateNext tree s (Just n1) parent 
+        ... | nothing  = rotateNext tree s nothing n0
+        ... | just n1 with parent
+        ...           | nothing = rotateNext tree s (just n1) nothing
+        ...           | just parent1 with right parent1
+        ...                | nothing = rotateNext tree s (just n1) nothing
+        ...                | just rightParent with compTri (key n1) (key rightParent)
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent
+        -- ...                                    | EQ = rotateNext tree s (just n1) parent
+        -- ...                                    | _ = rotateNext tree s (just n1) parent
 
 {-# TERMINATING #-}
-insertCase5 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
-insertCase5 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent -> insertCase51 tree s n0 parent grandParent next)
+insertCase5 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+insertCase5 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent → insertCase51 tree s n0 parent grandParent next)
   where
-    insertCase51 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+    insertCase51 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t}  a k → t) → t
     insertCase51 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next with n0
-    ...     | Nothing = next tree
-    ...     | Just n1  with  parent | grandParent
-    ...                 | Nothing | _  = next tree
-    ...                 | _ | Nothing  = next tree
-    ...                 | Just parent1 | Just grandParent1 with left parent1 | left grandParent1
-    ...                                                     | Nothing | _  = next tree
-    ...                                                     | _ | Nothing  = next tree
-    ...                                                     | Just leftParent1 | Just leftGrandParent1
-      with compare tree (key n1) (key leftParent1) | compare tree (key leftParent1) (key leftGrandParent1)
-    ...     | EQ | EQ = rotateRight tree s n0 parent 
-                 (\ tree s n0 parent -> insertCase5 tree s n0 parent1 grandParent1 next)
-    ...     | _ | _ = rotateLeft tree s n0 parent 
-                 (\ tree s n0 parent -> insertCase5 tree s n0 parent1 grandParent1 next)
+    ...     | nothing = next tree
+    ...     | just n1  with  parent | grandParent
+    ...                 | nothing | _  = next tree
+    ...                 | _ | nothing  = next tree
+    ...                 | just parent1 | just grandParent1 with left parent1 | left grandParent1
+    ...                                                     | nothing | _  = next tree
+    ...                                                     | _ | nothing  = next tree
+    ...                                                     | just leftParent1 | just leftGrandParent1
+      with compTri (key n1) (key leftParent1) | compTri (key leftParent1) (key leftGrandParent1)
+    ...    | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1  = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    ...    | _            | _                = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    -- ...     | EQ | EQ = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    -- ...     | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
 
-insertCase4 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+insertCase4 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
 insertCase4 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next
        with  (right parent) | (left grandParent)
-...    | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next
-...    | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next       
-...    | Just rightParent | Just leftGrandParent with compare tree (key n0) (key rightParent) | compare tree (key parent) (key leftGrandParent)
-...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 -> rotateLeft tree s (left n0) (Just grandParent)
-   (\ tree s n0 parent -> insertCase5 tree s n0 rightParent grandParent next))
-...                                              | _ | _  = insertCase41 tree s n0 parent grandParent next
+...    | nothing | _ = insertCase5 tree s (just n0) parent grandParent next
+...    | _ | nothing = insertCase5 tree s (just n0) parent grandParent next
+...    | just rightParent | just leftGrandParent with compTri (key n0) (key rightParent) | compTri (key parent) (key leftGrandParent) -- (key n0) (key rightParent) | (key parent) (key leftGrandParent)
+-- ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent)
+--    (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next))
+-- ...                                              | _ | _  = insertCase41 tree s n0 parent grandParent next
+...                                                 | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next))
+... | _            | _               = insertCase41 tree s n0 parent grandParent next
   where
-    insertCase41 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+    insertCase41 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
     insertCase41 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next
-                 with  (left parent) | (right grandParent)       
-    ...    | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next
-    ...    | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next
-    ...    | Just leftParent | Just rightGrandParent with compare tree (key n0) (key leftParent) | compare tree (key parent) (key rightGrandParent)
-    ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 -> rotateRight tree s (right n0) (Just grandParent)
-       (\ tree s n0 parent -> insertCase5 tree s n0 leftParent grandParent next))
-    ...                                              | _ | _  = insertCase5 tree s (Just n0) parent grandParent next
+                 with  (left parent) | (right grandParent)
+    ...    | nothing | _ = insertCase5 tree s (just n0) parent grandParent next
+    ...    | _ | nothing = insertCase5 tree s (just n0) parent grandParent next
+    ...    | just leftParent | just rightGrandParent with compTri (key n0) (key leftParent) | compTri (key parent) (key rightGrandParent)
+    ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 =  popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next))
+    ... | _ | _ = insertCase5 tree s (just n0) parent grandParent next
+    -- ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent)
+    --    (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next))
+    -- ...                                              | _ | _  = insertCase5 tree s (just n0) parent grandParent next
 
-colorNode : {n : Level } {a k : Set n}  -> Node a k -> Color  -> Node a k
+colorNode : {n : Level } {a : Set n} {k : ℕ} → Node a k → Color  → Node a k
 colorNode old c = record old { color = c }
 
 {-# TERMINATING #-}
-insertNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t
+insertNode : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
 insertNode {n} {m} {t} {a} {k}  tree s n0 next = get2SingleLinkedStack s (insertCase1 n0)
    where
-    insertCase1 : Node a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t    -- placed here to allow mutual recursion
+    insertCase1 : Node a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t    -- placed here to allow mutual recursion
           -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html
-    insertCase3 : SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> t
+    insertCase3 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t
     insertCase3 s n0 parent grandParent with left grandParent | right grandParent
-    ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next
-    ... | Nothing | Just uncle  = insertCase4 tree s n0 parent grandParent next
-    ... | Just uncle | _  with compare tree ( key uncle ) ( key parent )
-    ...                   | EQ =  insertCase4 tree s n0 parent grandParent next
-    ...                   | _ with color uncle
-    ...                           | Red = pop2SingleLinkedStack s ( \s p0 p1 -> insertCase1  (
-           record grandParent { color = Red ; left = Just ( record parent { color = Black } )  ; right = Just ( record uncle { color = Black } ) }) s p0 p1 )
-    ...                           | Black = insertCase4 tree s n0 parent grandParent next
-    insertCase2 : SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> t
+    ... | nothing | nothing = insertCase4 tree s n0 parent grandParent next
+    ... | nothing | just uncle  = insertCase4 tree s n0 parent grandParent next
+    ... | just uncle | _  with compTri ( key uncle ) ( key parent )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri≈ ¬a b ¬c = insertCase4 tree s n0 parent grandParent next
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c with color uncle
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  (
+           record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Black = insertCase4 tree s n0 parent grandParent next
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c with color uncle
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  ( record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Black = insertCase4 tree s n0 parent grandParent next
+    -- ...                   | EQ =  insertCase4 tree s n0 parent grandParent next
+    -- ...                   | _ with color uncle
+    -- ...                           | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  (
+    --        record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    -- ...                           | Black = insertCase4 tree s n0 parent grandParent next --!!
+    insertCase2 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t
     insertCase2 s n0 parent grandParent with color parent
     ... | Black = replaceNode tree s n0 next
     ... | Red =   insertCase3 s n0 parent grandParent
-    insertCase1 n0 s Nothing Nothing = next tree
-    insertCase1 n0 s Nothing (Just grandParent) = next tree
-    insertCase1 n0 s (Just parent) Nothing = replaceNode tree s (colorNode n0 Black) next
-    insertCase1 n0 s (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent
+    insertCase1 n0 s nothing nothing = next tree
+    insertCase1 n0 s nothing (just grandParent) = next tree
+    insertCase1 n0 s (just parent) nothing = replaceNode tree s (colorNode n0 Black) next
+    insertCase1 n0 s (just parent) (just grandParent) = insertCase2 s n0 parent grandParent
 
 ----
 -- find node potition to insert or to delete, the path will be in the stack
--- 
-findNode : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> t) -> t
-findNode {n} {m} {a} {k}  {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s -> findNode1 s n1)
+--
+findNode : {n m  : Level } {a : Set n} {k : ℕ} {t : Set m}  → RedBlackTree {n} {m} {t}   a k → SingleLinkedStack (Node a k) → (Node a k) → (Node a k) → (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → t) → t
+findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s → findNode1 s n1)
   module FindNode where
-    findNode2 : SingleLinkedStack (Node a k) -> (Maybe (Node a k)) -> t
-    findNode2 s Nothing = next tree s n0
-    findNode2 s (Just n) = findNode tree s n0 n next
-    findNode1 : SingleLinkedStack (Node a k) -> (Node a k)  -> t
-    findNode1 s n1 with (compare tree (key n0) (key n1))
-    ...                                | EQ = popSingleLinkedStack s ( \s _ -> next tree s (record n1 { key = key n1 ; value = value n0 } ) )
-    ...                                | GT = findNode2 s (right n1)
-    ...                                | LT = findNode2 s (left n1)
+    findNode2 : SingleLinkedStack (Node a k) → (Maybe (Node a k)) → t
+    findNode2 s nothing = next tree s n0
+    findNode2 s (just n) = findNode tree s n0 n next
+    findNode1 : SingleLinkedStack (Node a k) → (Node a k)  → t
+    findNode1 s n1 with (compTri (key n0) (key n1))
+    findNode1 s n1 | tri< a ¬b ¬c = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) )
+    findNode1 s n1 | tri≈ ¬a b ¬c = findNode2 s (right n1)
+    findNode1 s n1 | tri> ¬a ¬b c = findNode2 s (left n1)
+    -- ...                                | EQ = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) )
+    -- ...                                | GT = findNode2 s (right n1)
+    -- ...                                | LT = findNode2 s (left n1)
+
+
+
+
+leafNode : {n : Level } { a : Set n } → a → (k : ℕ) → (Node a k)
+leafNode v k1 = record { key = k1 ; value = v ; right = nothing ; left = nothing ; color = Red }
+
+putRedBlackTree : {n m : Level} {t : Set m} {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → {!!} → {!!} → (RedBlackTree {n} {m} {t} a k → t) → t
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next with (root tree)
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | nothing = next (record tree {root = just (leafNode {!!} {!!}) })
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode {!!} {!!}) n2 (λ tree1 s n1 → insertNode tree1 s n1 next))
+-- putRedBlackTree {n} {m} {t} {a} {k} tree value k1 next with (root tree)
+-- ...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+-- ...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (\ s → findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 → insertNode tree1 s n1 next))
+
+
+-- getRedBlackTree : {n m  : Level } {t : Set m}  {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} {A}  a k → k → (RedBlackTree {n} {m} {t} {A}  a k → (Maybe (Node a k)) → t) → t
+-- getRedBlackTree {_} {_} {t}  {a} {k} tree k1 cs = checkNode (root tree)
+--   module GetRedBlackTree where                     -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html
+--     search : Node a k → t
+--     checkNode : Maybe (Node a k) → t
+--     checkNode nothing = cs tree nothing
+--     checkNode (just n) = search n
+--     search n with compTri k1 (key n)
+--     search n | tri< a ¬b ¬c = checkNode (left n)
+--     search n | tri≈ ¬a b ¬c = cs tree (just n)
+--     search n | tri> ¬a ¬b c = checkNode (right n)
+
 
 
-leafNode : {n : Level } {a k : Set n}  -> k -> a -> Node a k
-leafNode k1 value = record {
-    key   = k1 ;
-    value = value ;
-    right = Nothing ;
-    left  = Nothing ;
-    color = Red
-  }
+-- compareT :  {A B C : Set } → ℕ → ℕ → Tri A B C
+-- compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) x y
+-- compareT x y | tri< a ¬b ¬c = tri< {!!} {!!} {!!}
+-- compareT x y | tri≈ ¬a b ¬c = {!!}
+-- compareT x y | tri> ¬a ¬b c = {!!}
+-- -- ... | tri≈ a b c = {!!}
+-- -- ... | tri< a b c = {!!}
+-- -- ... | tri> a b c = {!!}
 
-putRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> a -> (RedBlackTree {n} {m} {t} a k -> t) -> t
-putRedBlackTree {n} {m} {a} {k}  {t} tree k1 value next with (root tree)
-...                                | Nothing = next (record tree {root = Just (leafNode k1 value) })
-...                                | Just n2  = clearSingleLinkedStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next))
+-- compare2 : (x y : ℕ ) → CompareResult {Level.zero}
+-- compare2 zero zero = EQ
+-- compare2 (suc _) zero = GT
+-- compare2  zero (suc _) = LT
+-- compare2  (suc x) (suc y) = compare2 x y
 
-getRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> (RedBlackTree {n} {m} {t} a k -> (Maybe (Node a k)) -> t) -> t
-getRedBlackTree {_} {_} {a} {k} {t} tree k1 cs = checkNode (root tree)
-  module GetRedBlackTree where                     -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html
-    search : Node a k -> t
-    checkNode : Maybe (Node a k) -> t
-    checkNode Nothing = cs tree Nothing
-    checkNode (Just n) = search n
-    search n with compare tree k1 (key n) 
-    search n | LT = checkNode (left n)
-    search n | GT = checkNode (right n)
-    search n | EQ = cs tree (Just n)
-
-open import Data.Nat hiding (compare)
+-- -- putUnblanceTree : {n m : Level } {a : Set n} {k : ℕ} {t : Set m} → RedBlackTree {n} {m} {t} {A}  a k → k → a → (RedBlackTree {n} {m} {t} {A}  a k → t) → t
+-- -- putUnblanceTree {n} {m} {A} {a} {k} {t} tree k1 value next with (root tree)
+-- -- ...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+-- -- ...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (λ  s → findNode tree s (leafNode k1 value) n2 (λ  tree1 s n1 → replaceNode tree1 s n1 next))
 
-compareℕ :  ℕ → ℕ → CompareResult {Level.zero}
-compareℕ x y with Data.Nat.compare x y
-... | less _ _ = LT
-... | equal _ = EQ
-... | greater _ _ = GT
+-- -- checkT : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool
+-- -- checkT nothing _ = false
+-- -- checkT (just n) x with compTri (value n)  x
+-- -- ...  | tri≈ _ _ _ = true
+-- -- ...  | _ = false
 
-compareT :  ℕ → ℕ → CompareResult {Level.zero}
-compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder strictTotalOrder) x y
-... | tri≈ _ _ _ = EQ
-... | tri< _ _ _ = LT
-... | tri> _ _ _ = GT
-
-compare2 : (x y : ℕ ) -> CompareResult {Level.zero}
-compare2 zero zero = EQ
-compare2 (suc _) zero = GT
-compare2  zero (suc _) = LT
-compare2  (suc x) (suc y) = compare2 x y
-
-putUnblanceTree : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → k → a → (RedBlackTree {n} {m} {t} a k → t) → t
-putUnblanceTree {n} {m} {a} {k} {t} tree k1 value next with (root tree)
-...                                | Nothing = next (record tree {root = Just (leafNode k1 value) })
-...                                | Just n2  = clearSingleLinkedStack (nodeStack tree) (λ  s → findNode tree s (leafNode k1 value) n2 (λ  tree1 s n1 → replaceNode tree1 s n1 next))
+-- -- checkEQ :  {m : Level }  ( x :  ℕ ) -> ( n : Node  ℕ ℕ ) -> (value n )  ≡ x  -> checkT {m} (just n) x ≡ true
+-- -- checkEQ x n refl with compTri (value n)  x
+-- -- ... |  tri≈ _ refl _ = refl
+-- -- ... |  tri> _ neq gt =  ⊥-elim (neq refl)
+-- -- ... |  tri< lt neq _ =  ⊥-elim (neq refl)
 
 
-createEmptyRedBlackTreeℕ : { m : Level } (a : Set Level.zero) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ 
-createEmptyRedBlackTreeℕ  {m} a {t} = record {
-        root = Nothing
+createEmptyRedBlackTreeℕ : {n m  : Level} {t : Set m} (a : Set n) (b : ℕ)
+     → RedBlackTree {n} {m} {t} a b
+createEmptyRedBlackTreeℕ a b = record {
+        root = nothing
      ;  nodeStack = emptySingleLinkedStack
-     ;  compare = compareT
+     -- ;  nodeComp = λ x x₁ → {!!}
+
    }
- 
+
+-- ( x y : ℕ ) ->  Tri  ( x < y )  ( x ≡ y )  ( x > y )
+
+-- test = (λ x → (createEmptyRedBlackTreeℕ x x) 
+
+ts = createEmptyRedBlackTreeℕ {ℕ} {?} {!!} 0
+
+-- tes = putRedBlackTree {_} {_} {_} (createEmptyRedBlackTreeℕ {_} {_} {_} 3 3) 2 2 (λ t → t)
--- a/Todo.txt	Thu Aug 16 18:22:08 2018 +0900
+++ b/Todo.txt	Fri Nov 01 17:42:51 2019 +0900
@@ -1,3 +1,5 @@
+
+
 Sun May  6 17:54:50 JST 2018
 
     do1 a $ \b ->  do2 b next を、do1 と do2  に分離することはできる?
@@ -44,3 +46,11 @@
     gotoを用いてモデル検査と証明の組み合わせを実現する
 
     
+Wed Aug 27 17:52:00 JST 2019
+
+    別で定義した TriCotomos や \=? などの Relation の関数を
+    Agdaで定義してあるものに置き換える,まとめる
+    
+    HoareLogic をベースにした SingleLinkedStack の作成
+    
+    HoareLogic ベースの Tree の証明
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/redBlackTreeHoare.agda	Fri Nov 01 17:42:51 2019 +0900
@@ -0,0 +1,290 @@
+module RedBlackTree where
+
+
+open import Level hiding (zero)
+
+open import Data.Nat hiding (compare)
+open import Data.Nat.Properties as NatProp
+open import Data.Maybe
+open import Data.Bool
+open import Data.Empty
+
+open import Relation.Binary
+open import Relation.Binary.PropositionalEquality
+
+open import stack
+
+record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
+  field
+    putImpl : treeImpl → a → (treeImpl → t) → t
+    getImpl  : treeImpl → (treeImpl → Maybe a → t) → t
+open TreeMethods
+
+record Tree  {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
+  field
+    tree : treeImpl
+    treeMethods : TreeMethods {n} {m} {a} {t} treeImpl
+  putTree : a → (Tree treeImpl → t) → t
+  putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} ))
+  getTree : (Tree treeImpl → Maybe a → t) → t
+  getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d )
+
+open Tree
+
+data Color {n : Level } : Set n where
+  Red   : Color
+  Black : Color
+
+
+record Node {n : Level } (a : Set n) (k : ℕ) : Set n where
+  inductive
+  field
+    key   : ℕ
+    value : a
+    right : Maybe (Node a k)
+    left  : Maybe (Node a k)
+    color : Color {n}
+open Node
+
+record RedBlackTree {n m : Level } {t : Set m} (a : Set n) (k : ℕ) : Set (m Level.⊔ n) where
+  field
+    root : Maybe (Node a k)
+    nodeStack : SingleLinkedStack  (Node a k)
+    -- compare : k → k → Tri A B C
+
+open RedBlackTree
+
+open SingleLinkedStack
+
+compTri : ( x y : ℕ ) ->  Tri ( x < y )  ( x ≡ y )  ( x > y )
+compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder)
+  where open import  Relation.Binary
+
+-- put new node at parent node, and rebuild tree to the top
+--
+{-# TERMINATING #-}   -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html
+replaceNode : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) →  Node a k → (RedBlackTree {n} {m} {t} a k → t) → t
+replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s (
+      \s parent → replaceNode1 s parent)
+       module ReplaceNode where
+          replaceNode1 : SingleLinkedStack (Node a k) → Maybe ( Node a k ) → t
+          replaceNode1 s nothing = next ( record tree { root = just (record n0 { color = Black}) } )
+          replaceNode1 s (just n1) with compTri  (key n1) (key n0)
+          replaceNode1 s (just n1) | tri< lt ¬eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next
+          replaceNode1 s (just n1) | tri≈ ¬lt eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { left = just n0 } ) next
+          replaceNode1 s (just n1) | tri> ¬lt ¬eq gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { right = just n0 } ) next
+
+
+rotateRight : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+  (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t
+rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext)
+  where
+        rotateRight1 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k)  → Maybe (Node a k) → Maybe (Node a k) →
+          (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k)  → Maybe (Node a k) → Maybe (Node a k) → t) → t
+        rotateRight1 {n} {m} {t} {a} {k}  tree s n0 parent rotateNext with n0
+        ... | nothing  = rotateNext tree s nothing n0
+        ... | just n1 with parent
+        ...           | nothing = rotateNext tree s (just n1 ) n0
+        ...           | just parent1 with left parent1
+        ...                | nothing = rotateNext tree s (just n1) nothing
+        ...                | just leftParent with compTri (key n1) (key leftParent)
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent
+
+
+rotateLeft : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+  (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →  t) → t
+rotateLeft {n} {m} {t} {a} {k}  tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateLeft1 tree s n0 parent rotateNext)
+  where
+        rotateLeft1 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+          (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t
+        rotateLeft1 {n} {m} {t} {a} {k}  tree s n0 parent rotateNext with n0
+        ... | nothing  = rotateNext tree s nothing n0
+        ... | just n1 with parent
+        ...           | nothing = rotateNext tree s (just n1) nothing
+        ...           | just parent1 with right parent1
+        ...                | nothing = rotateNext tree s (just n1) nothing
+        ...                | just rightParent with compTri (key n1) (key rightParent)
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent
+        -- ...                                    | EQ = rotateNext tree s (just n1) parent
+        -- ...                                    | _ = rotateNext tree s (just n1) parent
+
+{-# TERMINATING #-}
+insertCase5 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+insertCase5 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent → insertCase51 tree s n0 parent grandParent next)
+  where
+    insertCase51 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t}  a k → t) → t
+    insertCase51 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next with n0
+    ...     | nothing = next tree
+    ...     | just n1  with  parent | grandParent
+    ...                 | nothing | _  = next tree
+    ...                 | _ | nothing  = next tree
+    ...                 | just parent1 | just grandParent1 with left parent1 | left grandParent1
+    ...                                                     | nothing | _  = next tree
+    ...                                                     | _ | nothing  = next tree
+    ...                                                     | just leftParent1 | just leftGrandParent1
+      with compTri (key n1) (key leftParent1) | compTri (key leftParent1) (key leftGrandParent1)
+    ...    | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1  = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    ...    | _            | _                = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    -- ...     | EQ | EQ = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    -- ...     | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+
+insertCase4 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+insertCase4 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next
+       with  (right parent) | (left grandParent)
+...    | nothing | _ = insertCase5 tree s (just n0) parent grandParent next
+...    | _ | nothing = insertCase5 tree s (just n0) parent grandParent next
+...    | just rightParent | just leftGrandParent with compTri (key n0) (key rightParent) | compTri (key parent) (key leftGrandParent) -- (key n0) (key rightParent) | (key parent) (key leftGrandParent)
+-- ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent)
+--    (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next))
+-- ...                                              | _ | _  = insertCase41 tree s n0 parent grandParent next
+...                                                 | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next))
+... | _            | _               = insertCase41 tree s n0 parent grandParent next
+  where
+    insertCase41 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+    insertCase41 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next
+                 with  (left parent) | (right grandParent)
+    ...    | nothing | _ = insertCase5 tree s (just n0) parent grandParent next
+    ...    | _ | nothing = insertCase5 tree s (just n0) parent grandParent next
+    ...    | just leftParent | just rightGrandParent with compTri (key n0) (key leftParent) | compTri (key parent) (key rightGrandParent)
+    ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 =  popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next))
+    ... | _ | _ = insertCase5 tree s (just n0) parent grandParent next
+    -- ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent)
+    --    (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next))
+    -- ...                                              | _ | _  = insertCase5 tree s (just n0) parent grandParent next
+
+colorNode : {n : Level } {a : Set n} {k : ℕ} → Node a k → Color  → Node a k
+colorNode old c = record old { color = c }
+
+{-# TERMINATING #-}
+insertNode : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+insertNode {n} {m} {t} {a} {k}  tree s n0 next = get2SingleLinkedStack s (insertCase1 n0)
+   where
+    insertCase1 : Node a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t    -- placed here to allow mutual recursion
+          -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html
+    insertCase3 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t
+    insertCase3 s n0 parent grandParent with left grandParent | right grandParent
+    ... | nothing | nothing = insertCase4 tree s n0 parent grandParent next
+    ... | nothing | just uncle  = insertCase4 tree s n0 parent grandParent next
+    ... | just uncle | _  with compTri ( key uncle ) ( key parent )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri≈ ¬a b ¬c = insertCase4 tree s n0 parent grandParent next
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c with color uncle
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  (
+           record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Black = insertCase4 tree s n0 parent grandParent next
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c with color uncle
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  ( record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Black = insertCase4 tree s n0 parent grandParent next
+    -- ...                   | EQ =  insertCase4 tree s n0 parent grandParent next
+    -- ...                   | _ with color uncle
+    -- ...                           | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  (
+    --        record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    -- ...                           | Black = insertCase4 tree s n0 parent grandParent next --!!
+    insertCase2 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t
+    insertCase2 s n0 parent grandParent with color parent
+    ... | Black = replaceNode tree s n0 next
+    ... | Red =   insertCase3 s n0 parent grandParent
+    insertCase1 n0 s nothing nothing = next tree
+    insertCase1 n0 s nothing (just grandParent) = next tree
+    insertCase1 n0 s (just parent) nothing = replaceNode tree s (colorNode n0 Black) next
+    insertCase1 n0 s (just parent) (just grandParent) = insertCase2 s n0 parent grandParent
+
+----
+-- find node potition to insert or to delete, the path will be in the stack
+--
+findNode : {n m  : Level } {a : Set n} {k : ℕ} {t : Set m}  → RedBlackTree {n} {m} {t}   a k → SingleLinkedStack (Node a k) → (Node a k) → (Node a k) → (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → t) → t
+findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s → findNode1 s n1)
+  module FindNode where
+    findNode2 : SingleLinkedStack (Node a k) → (Maybe (Node a k)) → t
+    findNode2 s nothing = next tree s n0
+    findNode2 s (just n) = findNode tree s n0 n next
+    findNode1 : SingleLinkedStack (Node a k) → (Node a k)  → t
+    findNode1 s n1 with (compTri (key n0) (key n1))
+    findNode1 s n1 | tri< a ¬b ¬c = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) )
+    findNode1 s n1 | tri≈ ¬a b ¬c = findNode2 s (right n1)
+    findNode1 s n1 | tri> ¬a ¬b c = findNode2 s (left n1)
+    -- ...                                | EQ = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) )
+    -- ...                                | GT = findNode2 s (right n1)
+    -- ...                                | LT = findNode2 s (left n1)
+
+
+
+
+leafNode : {n : Level } { a : Set n } → a → (k : ℕ) → (Node a k)
+leafNode v k1 = record { key = k1 ; value = v ; right = nothing ; left = nothing ; color = Red }
+
+putRedBlackTree : {n m : Level} {t : Set m} {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → {!!} → {!!} → (RedBlackTree {n} {m} {t} a k → t) → t
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next with (root tree)
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | nothing = next (record tree {root = just (leafNode {!!} {!!}) })
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode {!!} {!!}) n2 (λ tree1 s n1 → insertNode tree1 s n1 next))
+-- putRedBlackTree {n} {m} {t} {a} {k} tree value k1 next with (root tree)
+-- ...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+-- ...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (\ s → findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 → insertNode tree1 s n1 next))
+
+
+-- getRedBlackTree : {n m  : Level } {t : Set m}  {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} {A}  a k → k → (RedBlackTree {n} {m} {t} {A}  a k → (Maybe (Node a k)) → t) → t
+-- getRedBlackTree {_} {_} {t}  {a} {k} tree k1 cs = checkNode (root tree)
+--   module GetRedBlackTree where                     -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html
+--     search : Node a k → t
+--     checkNode : Maybe (Node a k) → t
+--     checkNode nothing = cs tree nothing
+--     checkNode (just n) = search n
+--     search n with compTri k1 (key n)
+--     search n | tri< a ¬b ¬c = checkNode (left n)
+--     search n | tri≈ ¬a b ¬c = cs tree (just n)
+--     search n | tri> ¬a ¬b c = checkNode (right n)
+
+
+
+-- compareT :  {A B C : Set } → ℕ → ℕ → Tri A B C
+-- compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) x y
+-- compareT x y | tri< a ¬b ¬c = tri< {!!} {!!} {!!}
+-- compareT x y | tri≈ ¬a b ¬c = {!!}
+-- compareT x y | tri> ¬a ¬b c = {!!}
+-- -- ... | tri≈ a b c = {!!}
+-- -- ... | tri< a b c = {!!}
+-- -- ... | tri> a b c = {!!}
+
+-- compare2 : (x y : ℕ ) → CompareResult {Level.zero}
+-- compare2 zero zero = EQ
+-- compare2 (suc _) zero = GT
+-- compare2  zero (suc _) = LT
+-- compare2  (suc x) (suc y) = compare2 x y
+
+-- -- putUnblanceTree : {n m : Level } {a : Set n} {k : ℕ} {t : Set m} → RedBlackTree {n} {m} {t} {A}  a k → k → a → (RedBlackTree {n} {m} {t} {A}  a k → t) → t
+-- -- putUnblanceTree {n} {m} {A} {a} {k} {t} tree k1 value next with (root tree)
+-- -- ...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+-- -- ...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (λ  s → findNode tree s (leafNode k1 value) n2 (λ  tree1 s n1 → replaceNode tree1 s n1 next))
+
+-- -- checkT : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool
+-- -- checkT nothing _ = false
+-- -- checkT (just n) x with compTri (value n)  x
+-- -- ...  | tri≈ _ _ _ = true
+-- -- ...  | _ = false
+
+-- -- checkEQ :  {m : Level }  ( x :  ℕ ) -> ( n : Node  ℕ ℕ ) -> (value n )  ≡ x  -> checkT {m} (just n) x ≡ true
+-- -- checkEQ x n refl with compTri (value n)  x
+-- -- ... |  tri≈ _ refl _ = refl
+-- -- ... |  tri> _ neq gt =  ⊥-elim (neq refl)
+-- -- ... |  tri< lt neq _ =  ⊥-elim (neq refl)
+
+
+createEmptyRedBlackTreeℕ : {n m  : Level} {t : Set m} (a : Set n) (b : ℕ)
+     → RedBlackTree {n} {m} {t} a b
+createEmptyRedBlackTreeℕ a b = record {
+        root = nothing
+     ;  nodeStack = emptySingleLinkedStack
+     -- ;  nodeComp = λ x x₁ → {!!}
+
+   }
+
+-- ( x y : ℕ ) ->  Tri  ( x < y )  ( x ≡ y )  ( x > y )
+
+-- test = (λ x → (createEmptyRedBlackTreeℕ x x) 
+
+ts = createEmptyRedBlackTreeℕ {ℕ} {?} {!!} 0
+
+-- tes = putRedBlackTree {_} {_} {_} (createEmptyRedBlackTreeℕ {_} {_} {_} 3 3) 2 2 (λ t → t)
--- a/redBlackTreeTest.agda	Thu Aug 16 18:22:08 2018 +0900
+++ b/redBlackTreeTest.agda	Fri Nov 01 17:42:51 2019 +0900
@@ -1,17 +1,21 @@
 module redBlackTreeTest where
 
-open import RedBlackTree
-open import stack
 open import Level hiding (zero) renaming ( suc to succ )
 
 open import Data.Empty
-
+open import Data.List
+open import Data.Maybe
+open import Data.Bool
 open import Data.Nat
+open import Data.Nat.Properties  as NatProp
+
 open import Relation.Nullary
-
+open import Relation.Binary
 
 open import Algebra
-open import Data.Nat.Properties   as NatProp
+
+open import RedBlackTree
+open import stack
 
 open Tree
 open Node
@@ -20,197 +24,350 @@
 
 -- tests
 
-putTree1 : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → k → a → (RedBlackTree {n} {m} {t} a k → t) → t
+putTree1 : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → k → a → ((RedBlackTree {n} {m} {t} a k) → t) → t
 putTree1 {n} {m} {a} {k} {t} tree k1 value next with (root tree)
-...                                | Nothing = next (record tree {root = Just (leafNode k1 value) })
-...                                | Just n2  = clearSingleLinkedStack (nodeStack tree) (λ  s → findNode tree s (leafNode k1 value) n2 (λ  tree1 s n1 → replaceNode tree1 s n1 next))
+...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (λ  s → findNode tree s (leafNode k1 value) n2 (λ  tree1 s n1 → replaceNode tree1 s n1 next))
 
 open import Relation.Binary.PropositionalEquality
 open import Relation.Binary.Core
 open import Function
 
 
-check1 : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool {m}
-check1 Nothing _ = False
-check1 (Just n)  x with Data.Nat.compare (value n)  x
-...  | equal _ = True
-...  | _ = False
+-- check1 : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool
+-- check1 nothing _ = false
+-- check1 (just n)  x with Data.Nat.compare (value n)  x
+-- ...  | equal _ = true
+-- ...  | _ = false
 
-check2 : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool {m}
-check2 Nothing _ = False
-check2 (Just n)  x with compare2 (value n)  x
-...  | EQ = True
-...  | _ = False
+check2 : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool
+check2 nothing _ = false
+check2 (just n)  x with compare2 (value n)  x
+...  | EQ = true
+...  | _ = false
 
-test1 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( λ t → getRedBlackTree t 1 ( λ t x → check2 x 1 ≡ True   ))
-test1 = refl
+test1 : {m : Level} {A B C : Set} → putTree1 {Level.zero} {succ Level.zero} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ {!!} {!!} ) 1 1 ( λ t → getRedBlackTree t 1 ( λ t x → check2 {m} x 1 ≡ true ))
+test1 = {!!}
 
-test2 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 (
-    λ t → putTree1 t 2 2 (
-    λ t → getRedBlackTree t 1 (
-    λ t x → check2 x 1 ≡ True   )))
-test2 = refl
+-- test2 : {m : Level} → putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 (
+--     λ t → putTree1 t 2 2 (
+--     λ t → getRedBlackTree t 1 (
+--     λ t x → check2 {m} x 1 ≡ true   )))
+-- test2 = refl
 
-open ≡-Reasoning
-test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero}) 1 1
-    $ λ t → putTree1 t 2 2
-    $ λ t → putTree1 t 3 3
-    $ λ t → putTree1 t 4 4
-    $ λ t → getRedBlackTree t 1
-    $ λ t x → check2 x 1 ≡ True
-test3 = begin
-    check2 (Just (record {key = 1 ; value = 1 ; color = Black ; left = Nothing ; right = Just (leafNode 2 2)})) 1
-  ≡⟨ refl ⟩
-    True
-  ∎
+-- open ≡-Reasoning
+-- test3 : {m : Level} → putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero}) 1 1
+--     $ λ t → putTree1 t 2 2
+--     $ λ t → putTree1 t 3 3
+--     $ λ t → putTree1 t 4 4
+--     $ λ t → getRedBlackTree t 1
+--     $ λ t x → check2 {m} x 1 ≡ true
+-- test3 {m} = begin
+--     check2 {m} (just (record {key = 1 ; value = 1 ; color = Black ; left = nothing ; right = just (leafNode 2 2)})) 1
+--   ≡⟨ refl ⟩
+--     true
+--   ∎
 
-test31 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 1 1
-    $ λ t → putTree1 t 2 2
-    $ λ t → putTree1 t 3 3
-    $ λ t → putTree1 t 4 4
-    $ λ t → getRedBlackTree t 4
-    $ λ t x → x
+-- test31 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 1 1
+--     $ λ t → putTree1 t 2 2
+--     $ λ t → putTree1 t 3 3
+--     $ λ t → putTree1 t 4 4
+--     $ λ t → getRedBlackTree t 4
+--     $ λ t x → x
 
--- test5 : Maybe (Node ℕ ℕ)
-test5 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 4 4
-    $ λ t → putTree1 t 6 6
-    $ λ t0 →  clearSingleLinkedStack (nodeStack t0)
-    $ λ s → findNode1 t0 s (leafNode 3 3) ( root t0 )
-    $ λ t1 s n1 → replaceNode t1 s n1
-    $ λ t → getRedBlackTree t 3
-    -- $ λ t x → SingleLinkedStack.top (stack s)
-    -- $ λ t x → n1
-    $ λ t x → root t
-  where
-     findNode1 : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → (Node a k) → (Maybe (Node a k)) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → t) → t
-     findNode1 t s n1 Nothing next = next t s n1
-     findNode1 t s n1 ( Just n2 ) next = findNode t s n1 n2 next
+-- -- test5 : Maybe (Node ℕ ℕ)
+-- test5 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 4 4
+--     $ λ t → putTree1 t 6 6
+--     $ λ t0 →  clearSingleLinkedStack (nodeStack t0)
+--     $ λ s → findNode1 t0 s (leafNode 3 3) ( root t0 )
+--     $ λ t1 s n1 → replaceNode t1 s n1
+--     $ λ t → getRedBlackTree t 3
+--     -- $ λ t x → SingleLinkedStack.top (stack s)
+--     -- $ λ t x → n1
+--     $ λ t x → root t
+--   where
+--      findNode1 : {n m : Level } {a k : Set n} {t : Set m} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → (Node a k) → (Maybe (Node a k)) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → t) → t
+--      findNode1 t s n1 nothing next = next t s n1
+--      findNode1 t s n1 ( just n2 ) next = findNode t s n1 n2 next
 
--- test51 : putTree1 {_} {_} {ℕ} {ℕ} {_} {Maybe (Node ℕ ℕ)} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 $ λ t →
---   putTree1 t 2 2 $ λ t → putTree1 t 3 3 $ λ t → root t ≡ Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} )
--- test51 = refl
+-- -- test51 : putTree1 {_} {_} {ℕ} {ℕ} {_} {Maybe (Node ℕ ℕ)} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 $ λ t →
+-- --   putTree1 t 2 2 $ λ t → putTree1 t 3 3 $ λ t → root t ≡ just (record { key = 1; value = 1; left = just (record { key = 2 ; value = 2 } ); right = nothing} )
+-- -- test51 = refl
 
-test6 : Maybe (Node ℕ ℕ)
-test6 = root (createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)})
+-- test6 : Maybe (Node ℕ ℕ)
+-- test6 = root (createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)})
 
 
-test7 : Maybe (Node ℕ ℕ)
-test7 = clearSingleLinkedStack (nodeStack tree2) (λ  s → replaceNode tree2 s n2 (λ  t → root t))
-  where
-    tree2 = createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)}
-    k1 = 1
-    n2 = leafNode 0 0
-    value1 = 1
+-- test7 : Maybe (Node ℕ ℕ)
+-- test7 = clearSingleLinkedStack (nodeStack tree2) (λ  s → replaceNode tree2 s n2 (λ  t → root t))
+--   where
+--     tree2 = createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)}
+--     k1 = 1
+--     n2 = leafNode 0 0
+--     value1 = 1
 
-test8 : Maybe (Node ℕ ℕ)
-test8 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1
-    $ λ t → putTree1 t 2 2 (λ  t → root t)
+-- test8 : Maybe (Node ℕ ℕ)
+-- test8 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1
+--     $ λ t → putTree1 t 2 2 (λ  t → root t)
 
 
-test9 : putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( λ t → getRedBlackTree t 1 ( λ t x → check2 x 1 ≡ True   ))
-test9 = refl
-
-test10 : putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 (
-    λ t → putRedBlackTree t 2 2 (
-    λ t → getRedBlackTree t 1 (
-    λ t x → check2 x 1 ≡ True   )))
-test10 = refl
+-- test9 : {m : Level} → putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( λ t → getRedBlackTree t 1 ( λ t x → check2 {m} x 1 ≡ true   ))
+-- test9 = refl
 
-test11 = putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1
-    $ λ t → putRedBlackTree t 2 2
-    $ λ t → putRedBlackTree t 3 3
-    $ λ t → getRedBlackTree t 2
-    $ λ t x → root t
+-- test10 : {m : Level} → putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 (
+--     λ t → putRedBlackTree t 2 2 (
+--     λ t → getRedBlackTree t 1 (
+--     λ t x → check2 {m} x 1 ≡ true   )))
+-- test10 = refl
 
-
-redBlackInSomeState :{ m : Level } (a : Set Level.zero) (n : Maybe (Node a ℕ)) {t : Set m} → RedBlackTree {Level.zero} {m} {t} a ℕ
-redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compareT }
+-- test11 = putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1
+--     $ λ t → putRedBlackTree t 2 2
+--     $ λ t → putRedBlackTree t 3 3
+--     $ λ t → getRedBlackTree t 2
+--     $ λ t x → root t
 
 
 compTri :  ( x y : ℕ ) ->  Tri  (x < y) ( x ≡ y )  ( x > y )
-compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder strictTotalOrder)
+compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder)
    where open import  Relation.Binary
 
-checkT : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool {m}
-checkT Nothing _ = False
-checkT (Just n) x with compTri (value n)  x
-...  | tri≈ _ _ _ = True
-...  | _ = False
+checkT : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool
+checkT nothing _ = false
+checkT (just n) x with compTri (value n)  x
+...  | tri≈ _ _ _ = true
+...  | _ = false
 
-checkEQ :  {m : Level }  ( x :  ℕ ) -> ( n : Node  ℕ ℕ ) -> (value n )  ≡ x  -> checkT {m} (Just n) x ≡ True
+checkEQ :  {m : Level }  ( x :  ℕ ) -> ( n : Node  ℕ ℕ ) -> (value n )  ≡ x  -> checkT {m} (just n) x ≡ true
 checkEQ x n refl with compTri (value n)  x
 ... |  tri≈ _ refl _ = refl
 ... |  tri> _ neq gt =  ⊥-elim (neq refl)
 ... |  tri< lt neq _ =  ⊥-elim (neq refl)
 
-checkEQ' :  {m : Level }  ( x y :  ℕ ) -> ( eq : x  ≡ y  ) -> ( x  ≟ y ) ≡ yes eq
-checkEQ' x y refl with  x ≟ y
-... | yes refl = refl
-... | no neq = ⊥-elim ( neq refl )
+-- checkEQ' :  {m : Level }  ( x y :  ℕ ) -> ( eq : x ≡ y  ) -> ( x ≟ y ) ≡ yes eq
+-- checkEQ' x y refl with  x ≟ y
+-- ... | yes refl = refl
+-- ... | no neq = ⊥-elim ( neq refl )
 
 ---  search -> checkEQ
 ---  findNode -> search
 
+redBlackInSomeState : { m : Level } (a : Set Level.zero) (n : Maybe (Node a ℕ)) {t : Set m} {A B C : Set Level.zero } → RedBlackTree {Level.zero} {m} {t} {A} {B} {C} a ℕ
+redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; nodeComp = λ x x₁ → {!!} } -- record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compTri }
+
+
 open stack.SingleLinkedStack
 open stack.Element
 
 {-# TERMINATING #-}
-inStack : {l : Level} (n : Node ℕ ℕ) (s : SingleLinkedStack (Node ℕ ℕ) ) → Bool {l}
-inStack  n s with ( top s )
-... | Nothing = True
-... | Just n1 with  compTri (key n) (key (datum n1))
-...            | tri> _ neq _ =  inStack  n ( record { top = next n1 } )
-...            | tri< _ neq _ =  inStack  n ( record { top = next n1 } )
-...            | tri≈  _ refl _  = False
+inStack : {l : Level} (n : Node ℕ ℕ) (s : SingleLinkedStack (Node ℕ ℕ) ) → Bool
+inStack {l} n s with ( top s )
+... | nothing = true
+... | just n1 with  compTri (key n) (key (datum n1))
+...            | tri> _ neq _ =  inStack {l} n ( record { top = next n1 } )
+...            | tri< _ neq _ =  inStack {l} n ( record { top = next n1 } )
+...            | tri≈  _ refl _  = false
 
 record StackTreeInvariant  ( n : Node ℕ ℕ )
-        ( s : SingleLinkedStack (Node  ℕ ℕ) ) ( t : RedBlackTree ℕ ℕ ) : Set where
+        ( s : SingleLinkedStack (Node ℕ ℕ) ) ( t : RedBlackTree ℕ ℕ ) : Set where
   field
-    sti : replaceNode t s n $ λ  t1 → getRedBlackTree t1 (key n) (λ  t2 x1 → checkT x1 (value n)  ≡ True)
-    notInStack : inStack n s ≡ True  → ⊥
+    sti : {m : Level} → replaceNode t s n $ λ  t1 → getRedBlackTree t1 (key n) (λ  t2 x1 → checkT {m} x1 (value n)  ≡ true)
+    notInStack : {m : Level} → inStack {m} n s ≡ true  → ⊥
 
 open StackTreeInvariant
 
-putTest1 : (n : Maybe (Node ℕ ℕ))
-         → (k : ℕ) (x : ℕ)
-         → putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x
-           (λ  t → getRedBlackTree t k (λ  t x1 → checkT x1 x  ≡ True))
-putTest1 n k x with n
-...  | Just n1 = lemma0
-   where
-     upelem : (eleN : Element (Node ℕ ℕ)) -> (Node ℕ ℕ)
-     upelem eleN = n1
-     tree0 : (s : SingleLinkedStack (Node ℕ ℕ) ) → RedBlackTree ℕ ℕ
-     tree0 s = record { root = Just n1 ; nodeStack = s ; compare = compareT }
-     lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) → StackTreeInvariant (leafNode k x) s (tree0 s)
-         → findNode (tree0 s) s (leafNode k x) n1 (λ  tree1 s n1 → replaceNode tree1 s n1
-              (λ  t → getRedBlackTree t k (λ  t x1 → checkT x1 x  ≡ True)))
-     lemma2 s STI with compTri k (key n1)
-     ... |  tri≈ le refl gt = lemma5 s ( tree0 s ) n1
-        where
-           lemma5 :  (s : SingleLinkedStack (Node ℕ ℕ) )  → ( t :  RedBlackTree  ℕ ℕ  ) → ( n :  Node ℕ ℕ  ) → popSingleLinkedStack ( record { top = Just (cons n (SingleLinkedStack.top s)) }  )
-                   ( \ s1  _ -> (replaceNode (tree0 s1) s1 (record n1 { key = k ; value = x } ) (λ t →
-                      GetRedBlackTree.checkNode t (key n1) (λ t₁ x1 → checkT x1 x ≡ True) (root t))) )
-           lemma5 s t n with (top s)
-           ...          | Just n2  with compTri k k
-           ...            | tri< _ neq _ =  ⊥-elim (neq refl)
-           ...            | tri> _ neq _ =  ⊥-elim (neq refl)
-           ...            | tri≈  _ refl _  =  ⊥-elim (notInStack STI ({!!}))
-           lemma5 s t n | Nothing with compTri k k
-           ...            | tri≈  _ refl _  = checkEQ x _ refl
-           ...            | tri< _ neq _ =  ⊥-elim (neq refl)
-           ...            | tri> _ neq _ =  ⊥-elim (neq refl)
-     ... |  tri> le eq gt = sti ( record { sti = {!!} ; notInStack = {!!}  } )
-     ... |  tri< le eq gt = {!!}
-     lemma0 : clearSingleLinkedStack (record {top = Nothing}) (\s → findNode (tree0 s) s (leafNode k x) n1 (λ  tree1 s n1 → replaceNode tree1 s n1
-              (λ  t → getRedBlackTree t k (λ  t x1 → checkT x1 x  ≡ True))))
-     lemma0 = lemma2 (record {top = Nothing}) ( record { sti = {!!}  ; notInStack = {!!} } )
-...  | Nothing = lemma1
-   where
-     lemma1 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record {  root = Just ( record {
-               key   = k ; value = x ; right = Nothing ; left  = Nothing ; color = Red } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compareT x₁ y  } ) k
-        ( λ  t x1 → checkT x1 x  ≡ True)
-     lemma1 with compTri k k
-     ... | tri≈  _ refl _ = checkEQ x _ refl
-     ... | tri< _ neq _ =  ⊥-elim (neq refl)
-     ... | tri> _ neq _ =  ⊥-elim (neq refl)
+
+-- testn :  {!!}
+-- testn  =  putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 2 2
+--   $ λ t → putTree1 t 1 1
+--   $ λ t → putTree1 t 3 3 (λ ta → record {root = root ta ; nodeStack = nodeStack ta })
+
+
+-- List と Node で書こうとしたがなんだかんだListに直したほうが楽そうだった
+
+nullNode = (record {key = 0 ; value = 0 ; right = nothing ; left = nothing ; color = Red})
+
+-- treeTotal : { m : Level } {t : Set m} → ( s : List ℕ ) → ( tr : (Node ℕ ℕ) ) → (List ℕ → t) → t
+-- treeTotal {m} {t} s tr next with (left tr) | (right tr)
+-- treeTotal {m} {t} s tr next | nothing | nothing = next ((key tr) ∷ [])
+-- treeTotal {m} {t} s tr next | nothing | just x = treeTotal {m} {t} s x (λ li → next ((key tr) ∷ li))
+-- treeTotal {m} {t} s tr next | just x | nothing = treeTotal {m} {t} s x (λ li → next ((key tr) ∷ li))
+-- treeTotal {m} {t} s tr next | just x | just x₁ = treeTotal {m} {t} s x (λ li1 → treeTotal {m} {t} s x₁ (λ li2 → next (s ++ li1 ++ li2)))
+treeTotal : { n m : Level } {a : Set n} {t : Set m} → ( s : List a ) → ( tr : (Node a a) ) → List a
+treeTotal {n} {m} {a} {t} s tr with (left tr) | (right tr)
+treeTotal {n} {m} {a} {t} s tr | nothing | nothing = (key tr) ∷ []
+treeTotal {n} {m} {a} {t} s tr | nothing | just x = (key tr) ∷ (treeTotal {n} {m} {a} {t} s x)
+treeTotal {n} {m} {a} {t} s tr | just x | nothing = (key tr) ∷ (treeTotal {n} {m} {a} {t} s x)
+treeTotal {n} {m} {a} {t} s tr | just x | just x₁ = s ++ ((key tr) ∷ (treeTotal {n} {m} {a} {t} s x) ++ (treeTotal {n} {m} {a} {t} s x₁))
+
+
+-- treeTotalA : { m : Level } {t : Set m} → ( s : List ℕ ) → ( tr : (Node ℕ ℕ) ) → List ℕ
+
+-- (treeTotal {_} {ℕ} ([]) (Data.Maybe.fromMaybe nullNode (root (putTree1 {_} {_} {ℕ} {ℕ} testn 5 5 {!!}))))
+
+-- exput : (treeTotal {_} {ℕ} (5 ∷ []) (Data.Maybe.fromMaybe nullNode (root (createEmptyRedBlackTreeℕ ℕ))) (λ total → {!!})) ≡ {!!}
+-- exput = {!!}
+
+
+-- aaa = (treeTotal {_} {_} {ℕ} {_} (5 ∷ []) ((record { key = 4 ; value = 4 ; right = just (leafNode 6 6) ; left = just (leafNode 3 3) ; color = Black })))
+
+
+-- fuga = putTree1 {_} {_} {ℕ} {ℕ} (record {root = just (record { key = 4 ; value = 4 ; right = just (leafNode 6 6) ; left = just (leafNode 3 3) ; color = Black }) ; nodeStack = ( record {top = nothing}) ; compare = (λ x x₁ → EQ) }) 5 5 (λ aaa → aaa )
+
+-- nontree ++ 2 :: []
+
+-- piyo =  putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 2 2 ( λ t1 → findNode t1 (record {top = nothing}) (leafNode 2 2) (Data.Maybe.fromMaybe nullNode (root t1)) (λ tree stack node → {!!}))
+
+
+-- exn2l : {!!} ≡ (treeTotal {_} {ℕ} ([]) (putTree1 {_} {_} {ℕ} {ℕ} {!!} 5 5 (λ t → {!!}))) -- (treeTotal {_} {ℕ} (5 ∷ []) (Data.Maybe.fromMaybe nullNode (root testn)))
+-- exn2l = refl
+
+
+
+
+
+-- record FS {n m : Level } {a : Set n} {t : Set m} (oldTotal : List a) ( s : List a ) ( tr : (Node a a) ) : Set where
+--   field
+--     total : treeTotal {n} {m} {a} {t} s tr ≡ oldTotal
+-- -- usage = FS.total -- relation
+
+-- data P { n m : Level } { t : Set m } : Set where
+--   P₀ : (old : List ℕ) ( s : List ℕ ) → (tr : (Node ℕ ℕ) ) → FS {m} {t} old s tr → P
+
+
+
+-- ttt = putTree1 {_} {_} {ℕ} {ℕ}
+
+-- record TreeInterface {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set n where
+--   field
+--     tree : treeImpl
+--     list : List ℕ
+--     node : Node ℕ ℕ
+--     putTreeHoare : (FS {_} {ℕ} list list node) → putTree1 {!!} {!!} {!!} {!!}
+
+stack2list : {n m : Level} {t : Set m} {a : Set n} → (s : SingleLinkedStack a) → List a
+stack2list stack with top stack
+stack2list stack | just x = (datum x) ∷ (elm2list {_} {_} {ℕ} x)
+  where
+    elm2list : {n m : Level} {t : Set m} {a : Set n} → (elm : (Element a)) → List a
+    elm2list el with next el
+    elm2list el | just x = (datum el) ∷ (elm2list {_} {_} {ℕ} x)
+    elm2list el | nothing = (datum el) ∷ []
+stack2list stack | nothing = []
+
+
+-- list2element : {n m : Level} {t : Set m} {a : Set n} → (l : List a) → Maybe (Element a)
+-- list2element [] = nothing
+-- list2element (x ∷ l) = just (cons x (list2element {_} {_} {ℕ} l))
+
+-- ltest = list2element (1 ∷ 2 ∷ 3 ∷ [])
+
+list2stack : {n m : Level} {t : Set m} {a : Set n} {st : SingleLinkedStack a} → (l : List a)  → SingleLinkedStack a
+list2stack {n} {m} {t} {a} {s} (x ∷ l)  = pushSingleLinkedStack s x (λ s1 → list2stack {n} {m} {t} {a} {s1} l )
+list2stack {n} {m} {t} {a} {s} [] = s
+
+
+
+-- stest = list2stack (1 ∷ 2 ∷ 3 ∷ [])
+
+open Node
+
+exfind : { m : Level } { t : Set m} → (dt : ℕ) → (node : (Node ℕ ℕ))  → (st : List ℕ) →  findNode {_} {_} {ℕ} {ℕ} (redBlackInSomeState ℕ (just node)) (emptySingleLinkedStack) (leafNode dt dt) (node) (λ t1 st1 n1 → (( treeTotal {_} {m} {ℕ} {t} (dt ∷ st) (node) ) ≡ ( treeTotal {_} {m} {ℕ} {t} (dt ∷ st) (node) ) ))
+exfind dt node st with left node | right node
+exfind dt node st | just x | just x₁ = {!!}
+exfind dt node st | just x | nothing = {!!}
+exfind dt node st | nothing | just x = {!!}
+exfind dt node st | nothing | nothing with (compTri dt (key node))
+exfind dt node st | nothing | nothing | tri< a ¬b ¬c = {!!}
+exfind dt node st | nothing | nothing | tri≈ ¬a b ¬c = {!!}
+exfind dt node st | nothing | nothing | tri> ¬a ¬b c = {!!}
+
+-- exput : (ni : ℕ) → (tn : Node ℕ ℕ) → (ts : List ℕ) → (treeTotal {_} {ℕ} (ni ∷ ts) tn)
+--                  ≡ (treeTotal {_} {ℕ} (ts) (Data.Maybe.fromMaybe nullNode (root (putTree1 {_} {_} {ℕ} {ℕ} (record { root = just tn } ) ni ni (λ tt → tt)))))
+-- exput datum node [] with (right node) | (left node)
+-- exput datum node [] | nothing | nothing = {!!}
+-- exput datum node [] | just x | just x₁ = {!!}
+-- exput datum node [] | just x | nothing = {!!}
+-- exput datum node [] | nothing | just x = {!!}
+-- exput datum node (x ∷ stack₁) = {!!}
+
+
+-- proofTree : {n m : Level} {t : Set m} {a : Set n} (old stackl : List ℕ) → (node : Node ℕ ℕ) → (FS {_} {ℕ} old stackl node) → (tree : RedBlackTree ℕ ℕ) → (key : ℕ) → findNode  {{!!}} {{!!}} {{!!}} {{!!}} tree (list2stack {!!} (record {top = nothing})) (leafNode key key) node (λ tree1 stack1 datum → {!!})
+-- -- -- -- putTree1 tree key key (λ t → (FS {_} {ℕ} old stackl (Data.Maybe.fromMaybe nullNode (root tree))) )
+-- proofTree old stack node fs t k = {!!}
+
+-- FS は 証明そのものになると思ってたけど実は違いそう
+-- oldTotal と 現在の node, stack の組み合わせを比較する
+-- oldTotal はどうやって作る? ><
+-- treeTotal は list と node を受け取って それの total を出すのでそれで作る(list に put するデータなどを入れることで適当に作れる)
+
+-- p : {n m : Level} {t : Set m} {a : Set n} → ( s : SingleLinkedStack ℕ )  ( tr : (Node ℕ ℕ) ) ( tree : RedBlackTree ℕ ℕ ) (k : ℕ) →  (FS (treeTotal (k ∷ (stack2list s)) tr) (stack2list s) tr) → putTree1 tree k k (λ atree  → FS (treeTotal (stack2list s) (Data.Maybe.fromMaybe (tr) (root atree))) {!!} {!!})
+-- p stack node tree key = {!!}
+
+-- tt = (FS {_} {ℕ} [] [] (Data.Maybe.fromMaybe nullNode (root (createEmptyRedBlackTreeℕ {_} ℕ {ℕ}))))
+
+-- ttt : (a : P) → P
+-- ttt a = P₀ {!!} {!!} (record { key = {!!} ; value = {!!} ; right = {!!} ; left = {!!} ; color = {!!} }) (record { total = {!!} })
+
+
+-- FS では stack tree をあわせた整合性を示したい
+-- そのためには...?
+-- stack は前の node (というか一段上)が入ってる
+-- tree は現在の node がある
+
+
+ --   tr(Node ℕ ℕ)      s (List (Node))
+ --     3                  []
+ --    / \
+ --   2   5
+ --  /   / \
+ -- 1   4   6
+
+ --   search 6 (6 > 3)
+ --   tr(Node ℕ ℕ)      s (List (Node))
+ --     5                 just (node (1 2 nothing) 3 (4 5 6)
+ --    / \                 []
+ --   4   6
+
+--   search 6 (6 > 5)
+--   tr(Node ℕ ℕ)      s (List (Node))
+--       6              just (node (4 5 6))
+--                      just (node (1 2 nothing) 3 (4 5 6)
+--                       []
+
+-- just 6 → true みたいな感じ
+
+-- stack に node ごと入れるのは間違い…?
+-- 一応非破壊な感じがする(新しく作り直してる)
+-- どう釣り合いをとるか
+
+-- stack+tree : {n m : Level} {t : Set m} → List (Node ℕ ℕ) → Node ℕ ℕ → Node ℕ ℕ → (Maybe (Node ℕ ℕ) → t) → t
+-- stack+tree {n} stack mid org = st stack mid org where
+-- st : List (Node ℕ ℕ) → Node ℕ ℕ → Node ℕ ℕ → Maybe (Node ℕ ℕ)
+-- st [] _ _ = nothing
+-- st (x ∷ []) n n1 with Data.Nat.compare (key x) (key org) | Data.Nat.compare (value x) (value org)
+-- st (x ∷ []) n n1 | equal .(key x) | equal .(value x) = just org
+-- st (x ∷ []) n n1 | _ | _ = nothing
+-- st (x ∷ a)  n n1 with st a n n1
+-- st (x ∷ a) n n1 | just x₁ = {!!}
+-- st (x ∷ a) n n1 | nothing = nothing
+
+
+-- stack+tree : {n m : Level} {t : Set m} → List (Node ℕ ℕ) → Node ℕ ℕ → Node ℕ ℕ → (Maybe (Node ℕ ℕ) → t) → t
+-- stack+tree {n} stack mid org cg = st stack mid org
+--   where
+--            st : List (Node ℕ ℕ) → Node ℕ ℕ → Node ℕ ℕ → Maybe (Node ℕ ℕ)
+--            st [] _ _ = nothing
+--            st (x ∷ []) n n1 with Data.Nat.compare (key x) (key org) | Data.Nat.compare (value x) (value org)
+--            st (x ∷ []) n n1 | equal .(key x) | equal .(value x) = just org
+--            st (x ∷ []) n n1 | _ | _ = nothing
+--            st (x ∷ a)  n n1 with st a n n1
+--            st (x ∷ a) n n1 | just x₁ = {!!}
+--            st (x ∷ a) n n1 | nothing = nothing
+
+-- findNodePush : {n : Level}  → (stack : List (Node ℕ ℕ)) → (mid : Node ℕ ℕ) → (org : Node ℕ ℕ) → stack+tree stack mid org ≡ just ?
+--                → ? {return (? ∷ stack),mid'} → stack+tree (? ∷ stack) (mid') org ≡ just ?
+-- findNodePush 
+
+-- stack+tree が just だって言えたらよい
+-- {}2 は orig の どっちかのNode
+
--- a/stack.agda	Thu Aug 16 18:22:08 2018 +0900
+++ b/stack.agda	Fri Nov 01 17:42:51 2019 +0900
@@ -3,27 +3,28 @@
 
 open import Relation.Binary.PropositionalEquality
 open import Relation.Binary.Core
-open import Data.Nat
+open import Data.Nat hiding (compare)
+open import Data.Maybe
 
 ex : 1 + 2 ≡ 3
 ex = refl
 
-data Bool {n : Level } : Set n where
-  True  : Bool
-  False : Bool
+-- data Bool {n : Level } : Set n where
+--   True  : Bool
+--   False : Bool
 
-record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where
-  field
-    pi1 : a
-    pi2 : b
+-- record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where
+--   field
+--     pi1 : a
+--     pi2 : b
 
-data _∨_ {n : Level } (a : Set n) (b : Set n): Set n where
-   pi1  : a -> a ∨ b
-   pi2  : b -> a ∨ b
+-- data _∨_ {n : Level } (a : Set n) (b : Set n): Set n where
+--    pi1  : a -> a ∨ b
+--    pi2  : b -> a ∨ b
 
-data Maybe {n : Level } (a : Set n) : Set n where
-  Nothing : Maybe a
-  Just    : a -> Maybe a
+-- data Maybe {n : Level } (a : Set n) : Set n where
+--   nothing : Maybe a
+--   just    : a -> Maybe a
 
 record StackMethods {n m : Level } (a : Set n ) {t : Set m } (stackImpl : Set n ) : Set (m Level.⊔ n) where
   field
@@ -87,51 +88,51 @@
 pushSingleLinkedStack stack datum next = next stack1
   where
     element = cons datum (top stack)
-    stack1  = record {top = Just element}
+    stack1  = record {top = just element}
 
 
 popSingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t
 popSingleLinkedStack stack cs with (top stack)
-...                                | Nothing = cs stack  Nothing
-...                                | Just d  = cs stack1 (Just data1)
+...                                | nothing = cs stack  nothing
+...                                | just d  = cs stack1 (just data1)
   where
     data1  = datum d
     stack1 = record { top = (next d) }
 
 pop2SingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t
 pop2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack)
-...                                | Nothing = cs stack Nothing Nothing
-...                                | Just d = pop2SingleLinkedStack' {n} {m} stack cs
+...                                | nothing = cs stack nothing nothing
+...                                | just d = pop2SingleLinkedStack' {n} {m} stack cs
   where
     pop2SingleLinkedStack' : {n m : Level } {t : Set m }  -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t
     pop2SingleLinkedStack' stack cs with (next d)
-    ...              | Nothing = cs stack Nothing Nothing
-    ...              | Just d1 = cs (record {top = (next d1)}) (Just (datum d)) (Just (datum d1))
+    ...              | nothing = cs stack nothing nothing
+    ...              | just d1 = cs (record {top = (next d1)}) (just (datum d)) (just (datum d1))
     
 
 getSingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t
 getSingleLinkedStack stack cs with (top stack)
-...                                | Nothing = cs stack  Nothing
-...                                | Just d  = cs stack (Just data1)
+...                                | nothing = cs stack  nothing
+...                                | just d  = cs stack (just data1)
   where
     data1  = datum d
 
 get2SingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t
 get2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack)
-...                                | Nothing = cs stack Nothing Nothing
-...                                | Just d = get2SingleLinkedStack' {n} {m} stack cs
+...                                | nothing = cs stack nothing nothing
+...                                | just d = get2SingleLinkedStack' {n} {m} stack cs
   where
     get2SingleLinkedStack' : {n m : Level} {t : Set m } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t
     get2SingleLinkedStack' stack cs with (next d)
-    ...              | Nothing = cs stack Nothing Nothing
-    ...              | Just d1 = cs stack (Just (datum d)) (Just (datum d1))
+    ...              | nothing = cs stack nothing nothing
+    ...              | just d1 = cs stack (just (datum d)) (just (datum d1))
 
 clearSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (SingleLinkedStack a -> t) -> t
-clearSingleLinkedStack stack next = next (record {top = Nothing})
+clearSingleLinkedStack stack next = next (record {top = nothing})
 
 
 emptySingleLinkedStack : {n : Level } {a : Set n} -> SingleLinkedStack a
-emptySingleLinkedStack = record {top = Nothing}
+emptySingleLinkedStack = record {top = nothing}
 
 -----
 -- Basic stack implementations are specifications of a Stack