diff redBlackTreeHoare.agda @ 575:73fc32092b64

push local rbtree
author ryokka
date Fri, 01 Nov 2019 17:42:51 +0900
parents
children 40d01b368e34
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/redBlackTreeHoare.agda	Fri Nov 01 17:42:51 2019 +0900
@@ -0,0 +1,290 @@
+module RedBlackTree where
+
+
+open import Level hiding (zero)
+
+open import Data.Nat hiding (compare)
+open import Data.Nat.Properties as NatProp
+open import Data.Maybe
+open import Data.Bool
+open import Data.Empty
+
+open import Relation.Binary
+open import Relation.Binary.PropositionalEquality
+
+open import stack
+
+record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
+  field
+    putImpl : treeImpl → a → (treeImpl → t) → t
+    getImpl  : treeImpl → (treeImpl → Maybe a → t) → t
+open TreeMethods
+
+record Tree  {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
+  field
+    tree : treeImpl
+    treeMethods : TreeMethods {n} {m} {a} {t} treeImpl
+  putTree : a → (Tree treeImpl → t) → t
+  putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} ))
+  getTree : (Tree treeImpl → Maybe a → t) → t
+  getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d )
+
+open Tree
+
+data Color {n : Level } : Set n where
+  Red   : Color
+  Black : Color
+
+
+record Node {n : Level } (a : Set n) (k : ℕ) : Set n where
+  inductive
+  field
+    key   : ℕ
+    value : a
+    right : Maybe (Node a k)
+    left  : Maybe (Node a k)
+    color : Color {n}
+open Node
+
+record RedBlackTree {n m : Level } {t : Set m} (a : Set n) (k : ℕ) : Set (m Level.⊔ n) where
+  field
+    root : Maybe (Node a k)
+    nodeStack : SingleLinkedStack  (Node a k)
+    -- compare : k → k → Tri A B C
+
+open RedBlackTree
+
+open SingleLinkedStack
+
+compTri : ( x y : ℕ ) ->  Tri ( x < y )  ( x ≡ y )  ( x > y )
+compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder)
+  where open import  Relation.Binary
+
+-- put new node at parent node, and rebuild tree to the top
+--
+{-# TERMINATING #-}   -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html
+replaceNode : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) →  Node a k → (RedBlackTree {n} {m} {t} a k → t) → t
+replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s (
+      \s parent → replaceNode1 s parent)
+       module ReplaceNode where
+          replaceNode1 : SingleLinkedStack (Node a k) → Maybe ( Node a k ) → t
+          replaceNode1 s nothing = next ( record tree { root = just (record n0 { color = Black}) } )
+          replaceNode1 s (just n1) with compTri  (key n1) (key n0)
+          replaceNode1 s (just n1) | tri< lt ¬eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next
+          replaceNode1 s (just n1) | tri≈ ¬lt eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { left = just n0 } ) next
+          replaceNode1 s (just n1) | tri> ¬lt ¬eq gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { right = just n0 } ) next
+
+
+rotateRight : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+  (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t
+rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext)
+  where
+        rotateRight1 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k)  → Maybe (Node a k) → Maybe (Node a k) →
+          (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k)  → Maybe (Node a k) → Maybe (Node a k) → t) → t
+        rotateRight1 {n} {m} {t} {a} {k}  tree s n0 parent rotateNext with n0
+        ... | nothing  = rotateNext tree s nothing n0
+        ... | just n1 with parent
+        ...           | nothing = rotateNext tree s (just n1 ) n0
+        ...           | just parent1 with left parent1
+        ...                | nothing = rotateNext tree s (just n1) nothing
+        ...                | just leftParent with compTri (key n1) (key leftParent)
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent
+        rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent
+
+
+rotateLeft : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+  (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →  t) → t
+rotateLeft {n} {m} {t} {a} {k}  tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateLeft1 tree s n0 parent rotateNext)
+  where
+        rotateLeft1 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) →
+          (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node  a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t
+        rotateLeft1 {n} {m} {t} {a} {k}  tree s n0 parent rotateNext with n0
+        ... | nothing  = rotateNext tree s nothing n0
+        ... | just n1 with parent
+        ...           | nothing = rotateNext tree s (just n1) nothing
+        ...           | just parent1 with right parent1
+        ...                | nothing = rotateNext tree s (just n1) nothing
+        ...                | just rightParent with compTri (key n1) (key rightParent)
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent
+        rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent
+        -- ...                                    | EQ = rotateNext tree s (just n1) parent
+        -- ...                                    | _ = rotateNext tree s (just n1) parent
+
+{-# TERMINATING #-}
+insertCase5 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+insertCase5 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent → insertCase51 tree s n0 parent grandParent next)
+  where
+    insertCase51 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t}  a k → t) → t
+    insertCase51 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next with n0
+    ...     | nothing = next tree
+    ...     | just n1  with  parent | grandParent
+    ...                 | nothing | _  = next tree
+    ...                 | _ | nothing  = next tree
+    ...                 | just parent1 | just grandParent1 with left parent1 | left grandParent1
+    ...                                                     | nothing | _  = next tree
+    ...                                                     | _ | nothing  = next tree
+    ...                                                     | just leftParent1 | just leftGrandParent1
+      with compTri (key n1) (key leftParent1) | compTri (key leftParent1) (key leftGrandParent1)
+    ...    | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1  = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    ...    | _            | _                = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    -- ...     | EQ | EQ = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+    -- ...     | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next)
+
+insertCase4 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+insertCase4 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next
+       with  (right parent) | (left grandParent)
+...    | nothing | _ = insertCase5 tree s (just n0) parent grandParent next
+...    | _ | nothing = insertCase5 tree s (just n0) parent grandParent next
+...    | just rightParent | just leftGrandParent with compTri (key n0) (key rightParent) | compTri (key parent) (key leftGrandParent) -- (key n0) (key rightParent) | (key parent) (key leftGrandParent)
+-- ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent)
+--    (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next))
+-- ...                                              | _ | _  = insertCase41 tree s n0 parent grandParent next
+...                                                 | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next))
+... | _            | _               = insertCase41 tree s n0 parent grandParent next
+  where
+    insertCase41 : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+    insertCase41 {n} {m} {t} {a} {k}  tree s n0 parent grandParent next
+                 with  (left parent) | (right grandParent)
+    ...    | nothing | _ = insertCase5 tree s (just n0) parent grandParent next
+    ...    | _ | nothing = insertCase5 tree s (just n0) parent grandParent next
+    ...    | just leftParent | just rightGrandParent with compTri (key n0) (key leftParent) | compTri (key parent) (key rightGrandParent)
+    ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 =  popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next))
+    ... | _ | _ = insertCase5 tree s (just n0) parent grandParent next
+    -- ...                                              | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent)
+    --    (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next))
+    -- ...                                              | _ | _  = insertCase5 tree s (just n0) parent grandParent next
+
+colorNode : {n : Level } {a : Set n} {k : ℕ} → Node a k → Color  → Node a k
+colorNode old c = record old { color = c }
+
+{-# TERMINATING #-}
+insertNode : {n m  : Level } {t : Set m } {a : Set n} {k : ℕ}  → RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → (RedBlackTree {n} {m} {t}  a k → t) → t
+insertNode {n} {m} {t} {a} {k}  tree s n0 next = get2SingleLinkedStack s (insertCase1 n0)
+   where
+    insertCase1 : Node a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t    -- placed here to allow mutual recursion
+          -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html
+    insertCase3 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t
+    insertCase3 s n0 parent grandParent with left grandParent | right grandParent
+    ... | nothing | nothing = insertCase4 tree s n0 parent grandParent next
+    ... | nothing | just uncle  = insertCase4 tree s n0 parent grandParent next
+    ... | just uncle | _  with compTri ( key uncle ) ( key parent )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri≈ ¬a b ¬c = insertCase4 tree s n0 parent grandParent next
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c with color uncle
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  (
+           record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Black = insertCase4 tree s n0 parent grandParent next
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c with color uncle
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  ( record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Black = insertCase4 tree s n0 parent grandParent next
+    -- ...                   | EQ =  insertCase4 tree s n0 parent grandParent next
+    -- ...                   | _ with color uncle
+    -- ...                           | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1  (
+    --        record grandParent { color = Red ; left = just ( record parent { color = Black } )  ; right = just ( record uncle { color = Black } ) }) s p0 p1 )
+    -- ...                           | Black = insertCase4 tree s n0 parent grandParent next --!!
+    insertCase2 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t
+    insertCase2 s n0 parent grandParent with color parent
+    ... | Black = replaceNode tree s n0 next
+    ... | Red =   insertCase3 s n0 parent grandParent
+    insertCase1 n0 s nothing nothing = next tree
+    insertCase1 n0 s nothing (just grandParent) = next tree
+    insertCase1 n0 s (just parent) nothing = replaceNode tree s (colorNode n0 Black) next
+    insertCase1 n0 s (just parent) (just grandParent) = insertCase2 s n0 parent grandParent
+
+----
+-- find node potition to insert or to delete, the path will be in the stack
+--
+findNode : {n m  : Level } {a : Set n} {k : ℕ} {t : Set m}  → RedBlackTree {n} {m} {t}   a k → SingleLinkedStack (Node a k) → (Node a k) → (Node a k) → (RedBlackTree {n} {m} {t}  a k → SingleLinkedStack (Node a k) → Node a k → t) → t
+findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s → findNode1 s n1)
+  module FindNode where
+    findNode2 : SingleLinkedStack (Node a k) → (Maybe (Node a k)) → t
+    findNode2 s nothing = next tree s n0
+    findNode2 s (just n) = findNode tree s n0 n next
+    findNode1 : SingleLinkedStack (Node a k) → (Node a k)  → t
+    findNode1 s n1 with (compTri (key n0) (key n1))
+    findNode1 s n1 | tri< a ¬b ¬c = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) )
+    findNode1 s n1 | tri≈ ¬a b ¬c = findNode2 s (right n1)
+    findNode1 s n1 | tri> ¬a ¬b c = findNode2 s (left n1)
+    -- ...                                | EQ = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) )
+    -- ...                                | GT = findNode2 s (right n1)
+    -- ...                                | LT = findNode2 s (left n1)
+
+
+
+
+leafNode : {n : Level } { a : Set n } → a → (k : ℕ) → (Node a k)
+leafNode v k1 = record { key = k1 ; value = v ; right = nothing ; left = nothing ; color = Red }
+
+putRedBlackTree : {n m : Level} {t : Set m} {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → {!!} → {!!} → (RedBlackTree {n} {m} {t} a k → t) → t
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next with (root tree)
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | nothing = next (record tree {root = just (leafNode {!!} {!!}) })
+putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode {!!} {!!}) n2 (λ tree1 s n1 → insertNode tree1 s n1 next))
+-- putRedBlackTree {n} {m} {t} {a} {k} tree value k1 next with (root tree)
+-- ...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+-- ...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (\ s → findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 → insertNode tree1 s n1 next))
+
+
+-- getRedBlackTree : {n m  : Level } {t : Set m}  {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} {A}  a k → k → (RedBlackTree {n} {m} {t} {A}  a k → (Maybe (Node a k)) → t) → t
+-- getRedBlackTree {_} {_} {t}  {a} {k} tree k1 cs = checkNode (root tree)
+--   module GetRedBlackTree where                     -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html
+--     search : Node a k → t
+--     checkNode : Maybe (Node a k) → t
+--     checkNode nothing = cs tree nothing
+--     checkNode (just n) = search n
+--     search n with compTri k1 (key n)
+--     search n | tri< a ¬b ¬c = checkNode (left n)
+--     search n | tri≈ ¬a b ¬c = cs tree (just n)
+--     search n | tri> ¬a ¬b c = checkNode (right n)
+
+
+
+-- compareT :  {A B C : Set } → ℕ → ℕ → Tri A B C
+-- compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) x y
+-- compareT x y | tri< a ¬b ¬c = tri< {!!} {!!} {!!}
+-- compareT x y | tri≈ ¬a b ¬c = {!!}
+-- compareT x y | tri> ¬a ¬b c = {!!}
+-- -- ... | tri≈ a b c = {!!}
+-- -- ... | tri< a b c = {!!}
+-- -- ... | tri> a b c = {!!}
+
+-- compare2 : (x y : ℕ ) → CompareResult {Level.zero}
+-- compare2 zero zero = EQ
+-- compare2 (suc _) zero = GT
+-- compare2  zero (suc _) = LT
+-- compare2  (suc x) (suc y) = compare2 x y
+
+-- -- putUnblanceTree : {n m : Level } {a : Set n} {k : ℕ} {t : Set m} → RedBlackTree {n} {m} {t} {A}  a k → k → a → (RedBlackTree {n} {m} {t} {A}  a k → t) → t
+-- -- putUnblanceTree {n} {m} {A} {a} {k} {t} tree k1 value next with (root tree)
+-- -- ...                                | nothing = next (record tree {root = just (leafNode k1 value) })
+-- -- ...                                | just n2  = clearSingleLinkedStack (nodeStack tree) (λ  s → findNode tree s (leafNode k1 value) n2 (λ  tree1 s n1 → replaceNode tree1 s n1 next))
+
+-- -- checkT : {m : Level } (n : Maybe (Node  ℕ ℕ)) → ℕ → Bool
+-- -- checkT nothing _ = false
+-- -- checkT (just n) x with compTri (value n)  x
+-- -- ...  | tri≈ _ _ _ = true
+-- -- ...  | _ = false
+
+-- -- checkEQ :  {m : Level }  ( x :  ℕ ) -> ( n : Node  ℕ ℕ ) -> (value n )  ≡ x  -> checkT {m} (just n) x ≡ true
+-- -- checkEQ x n refl with compTri (value n)  x
+-- -- ... |  tri≈ _ refl _ = refl
+-- -- ... |  tri> _ neq gt =  ⊥-elim (neq refl)
+-- -- ... |  tri< lt neq _ =  ⊥-elim (neq refl)
+
+
+createEmptyRedBlackTreeℕ : {n m  : Level} {t : Set m} (a : Set n) (b : ℕ)
+     → RedBlackTree {n} {m} {t} a b
+createEmptyRedBlackTreeℕ a b = record {
+        root = nothing
+     ;  nodeStack = emptySingleLinkedStack
+     -- ;  nodeComp = λ x x₁ → {!!}
+
+   }
+
+-- ( x y : ℕ ) ->  Tri  ( x < y )  ( x ≡ y )  ( x > y )
+
+-- test = (λ x → (createEmptyRedBlackTreeℕ x x) 
+
+ts = createEmptyRedBlackTreeℕ {ℕ} {?} {!!} 0
+
+-- tes = putRedBlackTree {_} {_} {_} (createEmptyRedBlackTreeℕ {_} {_} {_} 3 3) 2 2 (λ t → t)