Mercurial > hg > Members > Moririn
changeset 737:7ae2dea2546b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Apr 2023 10:26:00 +0900 |
parents | 744ead2536a4 |
children | da56e6fb7667 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 28 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Fri Apr 21 14:44:52 2023 +0900 +++ b/hoareBinaryTree1.agda Sat Apr 22 10:26:00 2023 +0900 @@ -593,14 +593,13 @@ rbt-key {n} A (t-node-red key value x x₁ rb rb₁) = just key rbt-key {n} A (t-node-black key value x x₁ rb rb₁) = just key -data rbstackInvariant2 {n : Level} {A : Set n} (self : bt A) : (parent grand : bt A) → Set n where - s2-s1p2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp self n1 → rbstackInvariant2 self parent (node kg vg parent n2) - s2-1sp2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp n1 self → rbstackInvariant2 self parent (node kg vg parent n2) - s2-s12p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp self n1 → rbstackInvariant2 self parent (node kg vg n2 parent) - s2-1s2p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp n1 self → rbstackInvariant2 self parent (node kg vg n2 parent) +data ParentGrand {n : Level} {A : Set n} (self : bt A) : (parent grand : bt A) → Set n where + s2-s1p2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp self n1 → ParentGrand self parent (node kg vg parent n2) + s2-1sp2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp n1 self → ParentGrand self parent (node kg vg parent n2) + s2-s12p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp self n1 → ParentGrand self parent (node kg vg n2 parent) + s2-1s2p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent : bt A } → parent ≡ node kp vp n1 self → ParentGrand self parent (node kg vg n2 parent) data rotatedTree {n : Level} {A : Set n} : (before after : bt A ) → Set n where - rr-leaf : rotatedTree leaf leaf rr-node : {t : bt A} → rotatedTree t t rr-right : {ka kb : ℕ } {va vb : A} → {ta tb tc ta1 tb1 tc1 : bt A} → ka < kb @@ -612,22 +611,15 @@ → rotatedTree (node kb vb ta (node ka va tb tc) ) (node ka va (node kb vb ta1 tb1) tc1) rbsi-len : {n : Level} {A : Set n} {orig parent grand : bt A} - → rbstackInvariant2 orig parent grand → ℕ + → ParentGrand orig parent grand → ℕ rbsi-len {n} {A} {s} {p} {g} st = ? -findRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) {key1 d d1 : ℕ} → {c c1 : Color} → (tree : RBTree A key c d ) (tree1 : RBTree A key1 c1 d1 ) - → rbstackInvariant2 ? ? ? - → (next : {key0 d0 : ℕ} {c0 : Color} → (tree0 : RBTree A key0 c0 d0 ) → rbstackInvariant2 ? ? ? → rbt-depth A tree0 < rbt-depth A tree1 → t ) - → (exit : {key0 d0 : ℕ} {c0 : Color} → (tree0 : RBTree A key0 c0 d0 ) → rbstackInvariant2 ? ? ? - → (rbt-depth A tree ≡ 0 ) ∨ ( rbt-key A tree ≡ just key ) → t ) → t -findRBP {n} {m} {A} {t} key {key1} tree (rb-leaf _) si next exit = exit tree si ? -findRBP {n} {m} {A} {t} key tree (rb-single _ value _) si next exit = ? -findRBP {n} {m} {A} {t} key tree (t-right-red _ value x tree1) si next exit = ? -findRBP {n} {m} {A} {t} key tree (t-right-black _ value x tree1) si next exit = ? -findRBP {n} {m} {A} {t} key tree (t-left-red _ value x tree1) si next exit = ? -findRBP {n} {m} {A} {t} key tree (t-left-black _ value x tree1) si next exit = ? -findRBP {n} {m} {A} {t} key tree (t-node-red _ value x x₁ tree1 tree2) si next exit = ? -findRBP {n} {m} {A} {t} key tree (t-node-black _ value x x₁ tree1 tree2) si next exit = ? +findRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) {key1 d d1 : ℕ} → {c c1 : Color} → (tree : RBTree A key c d ) (orig : RBTree A key1 c1 d1 ) + → (stack : List (bt A)) → stackInvariant key (RB→bt A tree) (RB→bt A orig) stack + → (next : {key0 d0 : ℕ} {c0 : Color} → (tree1 : RBTree A key0 c0 d0 ) → (stack : List (bt A)) → stackInvariant key (RB→bt A tree1) (RB→bt A orig) stack → rbt-depth A tree1 < rbt-depth A tree → t ) + → (exit : {key0 d0 : ℕ} {c0 : Color} → (tree1 : RBTree A key0 c0 d0 ) → (stack : List (bt A)) → stackInvariant key (RB→bt A tree1) (RB→bt A orig) stack + → (rbt-depth A tree1 ≡ 0 ) ∨ ( rbt-key A tree1 ≡ just key ) → t ) → t +findRBP {n} {m} {A} {t} key {key1} tree orig st si next exit = ? rotateRight : ? rotateRight = ? @@ -638,40 +630,37 @@ insertCase5 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → {key0 key1 key2 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} → (orig : RBTree A key1 c1 d1 ) → (tree : RBTree A key1 c1 d1 ) ( repl : RBTree A key2 c2 d2 ) - → (si : rbstackInvariant2 ? ? ?) + → (si : ParentGrand ? ? ?) → (ri : rotatedTree (RB→bt A tree) (RB→bt A repl)) → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 : RBTree A k1 c1 d1 ) (repl1 : RBTree A k2 c2 d2 ) - → (si1 : rbstackInvariant2 ? ? ?) + → (si1 : ParentGrand ? ? ?) → (ri : rotatedTree (RB→bt A tree1) (RB→bt A repl1)) → rbsi-len si1 < rbsi-len si → t ) → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 : RBTree A k1 c1 d1 ) → (repl1 : RBTree A k2 c2 d2 ) → (ri : rotatedTree (RB→bt A orig) (RB→bt A repl1)) → t ) → t insertCase5 {n} {m} {A} {t} key value orig tree repl si ri next exit = ? where - insertCase51 : (key1 : ℕ) (si : rbstackInvariant2 ? ? ? ) → t + insertCase51 : (key1 : ℕ) (si : ParentGrand ? ? ? ) → t insertCase51 = ? replaceRBP : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → {key0 key1 key2 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} - → (orig : RBTree A key1 c1 d1 ) → (tree : RBTree A key1 c1 d1 ) ( repl : RBTree A key2 c2 d2 ) - → (si : rbstackInvariant2 ? ? ? ) - → (ri : rotatedTree (RB→bt A tree) (RB→bt A repl)) - → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 : RBTree A k1 c1 d1 ) (repl1 : RBTree A k2 c2 d2 ) - → (si1 : rbstackInvariant2 ? ? ? ) - → (ri : rotatedTree (RB→bt A tree1) (RB→bt A repl1)) - → rbsi-len si1 < rbsi-len si → t ) - → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 : RBTree A k1 c1 d1 ) → (repl1 : RBTree A k2 c2 d2 ) - → (ri : rotatedTree (RB→bt A orig) (RB→bt A repl1)) + → (key : ℕ) → (value : A) → {key0 key1 d0 d1 : ℕ} {c0 c1 : Color} + → (orig : RBTree A key0 c0 d0 ) → (tree : RBTree A key1 c1 d1 ) + → (stack : List (bt A)) → (si : stackInvariant key (RB→bt A tree) (RB→bt A orig) stack ) + → (next : {key2 d2 : ℕ} {c2 : Color} → (tree2 : RBTree A key2 c2 d2 ) → (stack1 : List (bt A)) → stackInvariant key (RB→bt A tree2) (RB→bt A orig) stack1 + → length stack1 < length stack → t ) + → (exit : {k1 d1 : ℕ} {c1 : Color} → (repl1 : RBTree A k1 c1 d1 ) → (rot : bt A ) + → (ri : rotatedTree (RB→bt A orig) rot ) → replacedTree key value rot (RB→bt A repl1) → t ) → t -replaceRBP {n} {m} {A} {t} key value {_} {key2} orig tree repl si ri next exit = insertCase1 key2 si where - insertCase4 : (key1 : ℕ) → (si : rbstackInvariant2 ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t +replaceRBP {n} {m} {A} {t} key value {_} {key1} orig tree stack si next exit = insertCase1 ? ? where + insertCase4 : (key1 : ℕ) → (si : ParentGrand ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t insertCase4 = ? - insertCase3 : (key1 : ℕ) → (si : rbstackInvariant2 ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t + insertCase3 : (key1 : ℕ) → (si : ParentGrand ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t insertCase3 key1 si parent grandparent = ? - insertCase2 : (key1 : ℕ) → (si : rbstackInvariant2 ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t + insertCase2 : (key1 : ℕ) → (si : ParentGrand ? ? ? ) → {k1 d1 d2 : ℕ} {c1 c2 : Color} → (parent : RBTree A k1 c1 d1) → (grand : RBTree A key1 c2 d2) → t insertCase2 key1 si {_} {_} {_} {_} {Red} parent grand = insertCase3 key1 si parent grand - insertCase2 key1 si {_} {_} {_} {_} {Black} parent grand = next ? ? ? ? ? ? ? - insertCase1 : (key1 : ℕ) (si : rbstackInvariant2 ? ? ? ) → t + insertCase2 key1 si {_} {_} {_} {_} {Black} parent grand = next ? ? ? ? + insertCase1 : (key1 : ℕ) (si : ParentGrand ? ? ? ) → t insertCase1 key1 = ?