Mercurial > hg > Members > Moririn
changeset 663:cf5095488bbd
stack contains original tree at end always
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 21 Nov 2021 22:10:16 +0900 |
parents | a8959c8340e0 |
children | 1f702351fd1f |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 16 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Nov 21 21:52:03 2021 +0900 +++ b/hoareBinaryTree.agda Sun Nov 21 22:10:16 2021 +0900 @@ -145,21 +145,19 @@ stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) stackInvariantTest1 = s-right (add< 2) s-single -si-property1 : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack +si-property1 : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → stackInvariant key tree tree0 stack → stack-top stack ≡ just tree -si-property1 key t t0 [] ne (s-nil ) = ⊥-elim ( ne refl ) -si-property1 key t t0 (t ∷ []) ne s-single = refl -si-property1 key t t0 (t ∷ st) _ (s-right _ si) = refl -si-property1 key t t0 (t ∷ st) _ (s-left _ si) = refl +si-property1 key t t0 (t ∷ []) s-single = refl +si-property1 key t t0 (t ∷ st) (s-right _ si) = refl +si-property1 key t t0 (t ∷ st) (s-left _ si) = refl -si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → ¬ (stack ≡ []) → stackInvariant key tree tree0 stack +si-property-last : {n : Level} {A : Set n} (key : ℕ) (tree tree0 : bt A) → (stack : List (bt A)) → stackInvariant key tree tree0 stack → stack-last stack ≡ just tree0 -si-property-last key t t0 [] ne s-nil = ⊥-elim ( ne refl ) -si-property-last key t t0 (t ∷ []) _ s-single = refl -si-property-last key t t0 (.t ∷ x ∷ st) ne (s-right _ si ) with si-property1 key _ _ (x ∷ st) (λ ()) si -... | refl = si-property-last key x t0 (x ∷ st) (λ ()) si -si-property-last key t t0 (.t ∷ x ∷ st) ne (s-left _ si ) with si-property1 key _ _ (x ∷ st) (λ ()) si -... | refl = si-property-last key x t0 (x ∷ st) (λ ()) si +si-property-last key t t0 (t ∷ []) s-single = refl +si-property-last key t t0 (.t ∷ x ∷ st) (s-right _ si ) with si-property1 key _ _ (x ∷ st) si +... | refl = si-property-last key x t0 (x ∷ st) si +si-property-last key t t0 (.t ∷ x ∷ st) (s-left _ si ) with si-property1 key _ _ (x ∷ st) si +... | refl = si-property-last key x t0 (x ∷ st) si ti-right : {n : Level} {A : Set n} {tree₁ repl : bt A} → {key₁ : ℕ} → {v1 : A} → treeInvariant (node key₁ v1 tree₁ repl) → treeInvariant repl ti-right {_} {_} {.leaf} {_} {key₁} {v1} (t-single .key₁ .v1) = t-leaf @@ -228,12 +226,11 @@ findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁ findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n tree0 st Pre (case2 refl) findP {n} {_} {A} key nd@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (tree ∷ st) - ⟪ treeLeftDown tree tree₁ (proj1 Pre) , {!!} ⟫ depth-1< where - findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (nd ∷ st) - findP1 a (x ∷ st) si = {!!} -- s-left a ? ? stackInvariant key (node key₁ v1 tree tree₁) tree0 (x ∷ st) - -- → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ x ∷ st) - findP1 a [] si = {!!} -- stackInvariant key (node key₁ v1 tree tree₁) tree0 [] - -- → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ []) + ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where + findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) + findP1 a .(node key₁ v1 tree tree₁ ∷ []) s-single = {!!} + findP1 a .(node key₁ v1 tree tree₁ ∷ _) (s-right x si) = {!!} + findP1 a .(node key₁ v1 tree tree₁ ∷ _) (s-left x si) = {!!} findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2< replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) @@ -278,7 +275,7 @@ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) (node key₁ value₁ tree right ∷ st) ⟪ proj1 Pre , ⟪ repl5 (proj1 (proj2 Pre)) , r-left a (proj2 (proj2 Pre)) ⟫ ⟫ ≤-refl where repl5 : stackInvariant key tree-st tree0 (leaf ∷ node key₁ value₁ left right ∷ st) → stackInvariant key (node key₁ value₁ tree right) tree0 (node key₁ value₁ tree right ∷ st ) - repl5 si with si-property1 _ _ _ _ {!!} si + repl5 si with si-property1 _ _ _ {!!} si repl5 (s-right x si ) | refl = s-left a {!!} repl5 (s-left x si ) | refl = s-left a {!!} ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right) st {!!} depth-3<