Mercurial > hg > Members > Moririn
changeset 707:d0eafb67bf8d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 07 Dec 2021 18:28:06 +0900 |
parents | 2eedafdd95a6 |
children | 4761b08c4bd6 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 19 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Mon Dec 06 06:59:55 2021 +0900 +++ b/hoareBinaryTree.agda Tue Dec 07 18:28:06 2021 +0900 @@ -533,6 +533,25 @@ ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 ) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j ) +record LoopTermination {n : Level} {Index : Set n } { reduce : Index → ℕ } + (r : Index ) (C : Set n) : Set (Level.suc n) where + field + rd : (r1 : Index) → reduce r1 < reduce r + ci : C -- data continuation + +TerminatingLoopC : {l n : Level} {t : Set l} (Index : Set n ) → {C : Set n } → ( reduce : Index → ℕ) + → (r : Index) → (P : LoopTermination r C ) + → (loop : (r : Index) → LoopTermination {_} {_} {reduce} r C → (next : (r1 : Index) → LoopTermination r1 C → t ) → t) → t +TerminatingLoopC {_} {_} {t} Index {C} reduce r P loop with <-cmp 0 (reduce r) +... | tri≈ ¬a b ¬c = loop r P (λ r1 p1 → ⊥-elim (lemma3 b (LoopTermination.rd P r1))) +... | tri< a ¬b ¬c = loop r P (λ r1 p1 → TerminatingLoop1 (reduce r) r r1 (≤-step (LoopTermination.rd P r1)) p1 (LoopTermination.rd P r1)) where + TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j → {!!} → reduce r1 < reduce r → t + TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 {!!} (λ r2 P1 → ⊥-elim (lemma5 n≤j (LoopTermination.rd P1 r2))) + TerminatingLoop1 (suc j) r r1 n≤j p1 lt with <-cmp (reduce r1) (suc j) + ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt + ... | tri≈ ¬a b ¬c = loop r1 {!!} (λ r2 p2 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b {!!} ) p2 {!!} ) + ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j ) + record ReplCond {n : Level} {A : Set n} (C : ℕ → bt A → List (bt A) → Set n) : Set (Level.suc n) where field c1 : (key : ℕ) → (repl : bt A) → (stack : List (bt A)) → C key repl stack