Mercurial > hg > Members > atton > agda-proofs
changeset 27:892f8b3aa57e
ReWrite stack.agda using product type definition
author | atton <atton@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 23 Dec 2016 10:20:05 +0000 (2016-12-23) |
parents | d503a73186ce |
children | 67978ba63a6f |
files | cbc/product.agda cbc/stack-product.agda |
diffstat | 2 files changed, 152 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/cbc/product.agda Fri Dec 23 02:50:03 2016 +0000 +++ b/cbc/product.agda Fri Dec 23 10:20:05 2016 +0000 @@ -6,7 +6,7 @@ open import Function using (_∘_ ; id) open import Data.Unit -data CodeSegment (I O : Set) : Set₁ where +data CodeSegment (I O : Set) : Set where cs : (I -> O) -> CodeSegment I O
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cbc/stack-product.agda Fri Dec 23 10:20:05 2016 +0000 @@ -0,0 +1,151 @@ +module stack-product where + +open import product +open import Data.Product +open import Relation.Binary.PropositionalEquality + +-- definition based from Gears(209:5708390a9d88) src/parallel_execution +goto = executeCS + +data Bool : Set where + True : Bool + False : Bool + +data Maybe (a : Set) : Set where + Nothing : Maybe a + Just : a -> Maybe a + + +record Stack {a t : Set} (stackImpl : Set) : Set where + field + stack : stackImpl + push : CodeSegment (stackImpl × a × (CodeSegment stackImpl t)) t + pop : CodeSegment (stackImpl × (CodeSegment (stackImpl × Maybe a) t)) t + + +data Element (a : Set) : Set where + cons : a -> Maybe (Element a) -> Element a + +datum : {a : Set} -> Element a -> a +datum (cons a _) = a + +next : {a : Set} -> Element a -> Maybe (Element a) +next (cons _ n) = n + +record SingleLinkedStack (a : Set) : Set where + field + top : Maybe (Element a) +open SingleLinkedStack + +emptySingleLinkedStack : {a : Set} -> SingleLinkedStack a +emptySingleLinkedStack = record {top = Nothing} + + + + +pushSingleLinkedStack : {a t : Set} -> CodeSegment ((SingleLinkedStack a) × a × (CodeSegment (SingleLinkedStack a) t)) t +pushSingleLinkedStack = cs push + where + push : {a t : Set} -> ((SingleLinkedStack a) × a × (CodeSegment (SingleLinkedStack a) t)) -> t + push (stack , datum , next) = goto next stack1 + where + element = cons datum (top stack) + stack1 = record {top = Just element} + +popSingleLinkedStack : {a t : Set} -> CodeSegment (SingleLinkedStack a × (CodeSegment (SingleLinkedStack a × Maybe a) t)) t +popSingleLinkedStack = cs pop + where + pop : {a t : Set} -> (SingleLinkedStack a × (CodeSegment (SingleLinkedStack a × Maybe a) t)) -> t + pop (record { top = Nothing } , nextCS) = goto nextCS (emptySingleLinkedStack , Nothing) + pop (record { top = Just x } , nextCS) = goto nextCS (stack1 , (Just datum1)) + where + datum1 = datum x + stack1 = record { top = (next x) } + + + + + +createSingleLinkedStack : {a b : Set} -> Stack {a} {b} (SingleLinkedStack a) +createSingleLinkedStack = record { stack = emptySingleLinkedStack + ; push = pushSingleLinkedStack + ; pop = popSingleLinkedStack + } + + + + +test01 : {a : Set} -> CodeSegment (SingleLinkedStack a × Maybe a) Bool +test01 = cs test01' + where + test01' : {a : Set} -> (SingleLinkedStack a × Maybe a) -> Bool + test01' (record { top = Nothing } , _) = False + test01' (record { top = Just x } , _) = True + + +test02 : {a : Set} -> CodeSegment (SingleLinkedStack a) Bool +test02 = cs test02' + where + test02' : {a : Set} -> SingleLinkedStack a -> Bool + test02' stack = goto popSingleLinkedStack (stack , test01) + + +test03 : {a : Set} -> CodeSegment a Bool +test03 = cs test03' + where + test03' : {a : Set} -> a -> Bool + test03' a = goto pushSingleLinkedStack (emptySingleLinkedStack , a , test02) + + +lemma : {A : Set} {a : A} -> goto test03 a ≡ False +lemma = refl + +id : {A : Set} -> A -> A +id a = a + + +{- + +n-push : {A : Set} {a : A} -> Nat -> SingleLinkedStack A -> SingleLinkedStack A +n-push zero s = s +n-push {A} {a} (suc n) s = pushSingleLinkedStack (n-push {A} {a} n s) a (\s -> s) + +n-pop : {A : Set} {a : A} -> Nat -> SingleLinkedStack A -> SingleLinkedStack A +n-pop zero s = s +n-pop {A} {a} (suc n) s = popSingleLinkedStack (n-pop {A} {a} n s) (\s _ -> s) + +open ≡-Reasoning + +push-pop-equiv : {A : Set} {a : A} (s : SingleLinkedStack A) -> popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ≡ s +push-pop-equiv s = refl + +push-and-n-pop : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) -> n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {A} {a} n s +push-and-n-pop zero s = refl +push-and-n-pop {A} {a} (suc n) s = begin + n-pop (suc (suc n)) (pushSingleLinkedStack s a id) + ≡⟨ refl ⟩ + popSingleLinkedStack (n-pop (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) + ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s)) (push-and-n-pop n s) ⟩ + popSingleLinkedStack (n-pop n s) (\s _ -> s) + ≡⟨ refl ⟩ + n-pop (suc n) s + ∎ + + +n-push-pop-equiv : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) -> (n-pop {A} {a} n (n-push {A} {a} n s)) ≡ s +n-push-pop-equiv zero s = refl +n-push-pop-equiv {A} {a} (suc n) s = begin + n-pop (suc n) (n-push (suc n) s) + ≡⟨ refl ⟩ + n-pop (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) + ≡⟨ push-and-n-pop n (n-push n s) ⟩ + n-pop n (n-push n s) + ≡⟨ n-push-pop-equiv n s ⟩ + s + ∎ + + +n-push-pop-equiv-empty : {A : Set} {a : A} -> (n : Nat) -> n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack +n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack +-} +