Mercurial > hg > Members > atton > agda-proofs
changeset 4:fe1cf97997b9
Start proof to State Monad
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Nov 2014 09:42:55 +0900 |
parents | 36c9175d9adb |
children | e8494d175afb |
files | state/state.agda |
diffstat | 1 files changed, 42 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/state/state.agda Sun Nov 02 09:42:55 2014 +0900 @@ -0,0 +1,42 @@ +open import Relation.Binary.PropositionalEquality +open import Level +open ≡-Reasoning + +{- +Haskell Definition +newtype State s a = State { runState :: s -> (a, s) } + +instance Monad (State s) where + return a = State $ \s -> (a, s) + m >>= k = State $ \s -> let + (a, s') = runState m s + in runState (k a) s' +-} + +module state where + +record Product {l ll : Level} (A : Set l) (B : Set ll) : Set (suc (l ⊔ ll)) where + constructor <_,_> + field + first : A + second : B +open Product + +product-create : {l ll : Level} {A : Set l} {B : Set ll} -> A -> B -> Product A B +product-create a b = < a , b > + + +record State {l ll : Level} (S : Set l) (A : Set ll) : Set (suc (l ⊔ ll)) where + field + runState : S -> Product A S +open State + +state : {l ll : Level} {S : Set l} {A : Set ll} -> (S -> Product A S) -> State S A +state f = record {runState = f} + +return : {l ll : Level} {S : Set l} {A : Set ll} -> A -> State S A +return a = state (\s -> < a , s > ) + + +_>>=_ : {l ll lll : Level} {S : Set l} {A : Set ll} {B : Set lll} -> State S A -> (A -> State S B) -> State S B +m >>= k = {!!} \ No newline at end of file