Mercurial > hg > Members > atton > agda-proofs
changeset 1:fe247f476ecb
Migrate systemT from atton/agda/systemT (13:5a81867278af)
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Nov 2014 09:40:54 +0900 |
parents | 8a5f4ebdd34d |
children | 4c1a6ce23f9e |
files | systemT/boolean.agda systemT/int.agda systemT/systemT.agda |
diffstat | 3 files changed, 194 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/systemT/boolean.agda Sun Nov 02 09:40:54 2014 +0900 @@ -0,0 +1,22 @@ +open import systemT +open import Relation.Binary.PropositionalEquality + +module boolean where + +_and_ : Bool -> Bool -> Bool +T and b = b +F and _ = F + +_or_ : Bool -> Bool -> Bool +T or _ = T +F or b = b + +not : Bool -> Bool +not T = F +not F = T + +De-Morgan's-laws : (a b : Bool) -> (not a) and (not b) ≡ not (a or b) +De-Morgan's-laws T T = refl +De-Morgan's-laws T F = refl +De-Morgan's-laws F T = refl +De-Morgan's-laws F F = refl
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/systemT/int.agda Sun Nov 02 09:40:54 2014 +0900 @@ -0,0 +1,155 @@ +open import systemT +open import Relation.Binary.PropositionalEquality +open ≡-Reasoning + +module int where + +double : Int -> Int +double O = O +double (S n) = S (S (double n)) + + +infixl 30 _+_ +_+_ : Int -> Int -> Int +n + O = n +n + (S m) = S (n + m) + +left-add-zero : (n : Int) -> O + n ≡ n +left-add-zero O = refl +left-add-zero (S n) = cong S (left-add-zero n) + +left-add-one : (n : Int) -> (S n) ≡ S O + n +left-add-one O = refl +left-add-one (S n) = cong S (left-add-one n) + +left-increment : (n m : Int) -> (S n) + m ≡ S (n + m) +left-increment n O = refl +left-increment n (S m) = cong S (left-increment n m) + +sum-sym : (x : Int) (y : Int) -> x + y ≡ y + x +sum-sym O O = refl +sum-sym O (S y) = cong S (sum-sym O y) +sum-sym (S x) O = cong S (sum-sym x O) +sum-sym (S x) (S y) = begin + (S x) + (S y) + ≡⟨ refl ⟩ + S ((S x) + y) + ≡⟨ cong S (sum-sym (S x) y) ⟩ + S (y + (S x)) + ≡⟨ (sym (left-increment y (S x))) ⟩ + (S y) + (S x) + ∎ + +sum-assoc : (x y z : Int) -> x + (y + z) ≡ (x + y) + z +sum-assoc O O O = refl +sum-assoc O O (S z) = cong S (sum-assoc O O z) +sum-assoc O (S y) O = refl +sum-assoc O (S y) (S z) = cong S (sum-assoc O (S y) z) +sum-assoc (S x) O O = refl +sum-assoc (S x) O (S z) = cong S (sum-assoc (S x) O z) +sum-assoc (S x) (S y) O = refl +sum-assoc (S x) (S y) (S z) = cong S (sum-assoc (S x) (S y) z) + + +infixl 40 _*_ +_*_ : Int -> Int -> Int +n * O = O +n * (S O) = n +n * (S m) = n + (n * m) + +right-mult-zero : (n : Int) -> n * O ≡ O +right-mult-zero n = refl + +right-mult-one : (n : Int) -> n * (S O) ≡ n +right-mult-one n = refl + +right-mult-distr-one : (n m : Int) -> n * (S m) ≡ n + (n * m) +right-mult-distr-one O O = refl +right-mult-distr-one O (S m) = refl +right-mult-distr-one (S n) O = refl +right-mult-distr-one (S n) (S m) = refl + + +left-mult-zero : (n : Int) -> O * n ≡ O +left-mult-zero O = refl +left-mult-zero (S n) = begin + O * (S n) + ≡⟨ right-mult-distr-one O n ⟩ + O + (O * n) + ≡⟨ sum-sym O (O * n) ⟩ + (O * n) + O + ≡⟨ refl ⟩ + (O * n) + ≡⟨ left-mult-zero n ⟩ + O + ∎ + +left-mult-one : (n : Int) -> (S O) * n ≡ n +left-mult-one O = refl +left-mult-one (S n) = begin + (S O) * S n + ≡⟨ right-mult-distr-one (S O) n ⟩ + (S O) + ((S O) * n) + ≡⟨ cong (_+_ (S O)) (left-mult-one n) ⟩ + (S O) + n + ≡⟨ sum-sym (S O) n ⟩ + n + (S O) + ≡⟨ refl ⟩ + S n + ∎ + + +left-mult-distr-one : (n m : Int) -> (S n) * m ≡ m + (n * m) +left-mult-distr-one O O = refl +left-mult-distr-one O (S m) = begin + (S O) * S m + ≡⟨ left-mult-one (S m) ⟩ + S m + ≡⟨ refl ⟩ + S m + O + ≡⟨ cong (_+_ (S m)) (sym (left-mult-zero (S m))) ⟩ + S m + (O * S m) + ∎ +left-mult-distr-one (S n) O = refl +left-mult-distr-one (S n) (S m) = begin + S (S n) * S m + ≡⟨ right-mult-distr-one (S (S n)) m ⟩ + (S (S n)) + ((S (S n)) * m) + ≡⟨ cong (\x -> (S (S n)) + x) (left-mult-distr-one (S n) m) ⟩ + S (S n) + (m + S n * m) + ≡⟨ cong (\x -> x + (m + S n * m)) (left-add-one (S n)) ⟩ + (S O) + (S n) + (m + S n * m) + ≡⟨ sum-assoc ((S O) + (S n)) m (S n * m) ⟩ + (S O) + (S n) + m + S n * m + ≡⟨ cong (\x -> x + m + S n * m) (sum-sym (S O) (S n)) ⟩ + ((((S n) + (S O)) + m) + S n * m) + ≡⟨ cong (\x -> x + (S n * m)) (sym (sum-assoc (S n) (S O) m))⟩ + (((S n) + ((S O) + m)) + S n * m) + ≡⟨ cong (\x -> (S n + x + S n * m)) (sym (left-add-one m)) ⟩ + ((S n) + (S m) + S n * m) + ≡⟨ cong (\x -> x + (S n * m)) (sum-sym (S n) (S m)) ⟩ + (S m) + (S n) + (S n * m) + ≡⟨ sym (sum-assoc (S m) (S n) (S n * m)) ⟩ + (S m) + ((S n) + ((S n) * m)) + ≡⟨ cong (\x -> (S m) + x ) (sym (right-mult-distr-one (S n) m )) ⟩ + S m + S n * S m + ∎ + + +mult-sym : (n m : Int) -> n * m ≡ m * n +mult-sym n O = begin + n * O + ≡⟨ refl ⟩ + O + ≡⟨ sym (left-mult-zero n) ⟩ + O * n + ∎ +mult-sym n (S m) = begin + n * (S m) + ≡⟨ right-mult-distr-one n m ⟩ + n + (n * m) + ≡⟨ cong (\x -> n + x ) (mult-sym n m) ⟩ + n + (m * n) + ≡⟨ sym (left-mult-distr-one m n) ⟩ + (S m) * n + ∎
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/systemT/systemT.agda Sun Nov 02 09:40:54 2014 +0900 @@ -0,0 +1,17 @@ +module systemT where + +data Bool : Set where + T : Bool + F : Bool + +data Int : Set where + O : Int + S : Int -> Int + +R : {U : Set} -> U -> (U -> (Int -> U)) -> Int -> U +R u v O = u +R u v (S t) = v (R u v t) t + +D : {U : Set} -> U -> U -> Bool -> U +D u v F = v +D u v T = u \ No newline at end of file