Mercurial > hg > Members > atton > agda > systemF
changeset 3:26cf9069f70a
Wrote Sigma in Existional
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Mar 2014 20:12:59 +0900 |
parents | bbf889402b64 |
children | f52b8d899cf1 |
files | systemF.agda |
diffstat | 1 files changed, 15 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/systemF.agda Thu Mar 20 17:30:00 2014 +0900 +++ b/systemF.agda Mon Mar 24 20:12:59 2014 +0900 @@ -64,3 +64,18 @@ lemma-sum-iota2 : {U V X R : Set l} -> {v : V} -> {ux : (U -> X)} -> {vx : (V -> X)} -> δ ux vx (ι2 v) ≡ vx v lemma-sum-iota2 = refl + +-- Existential + +--Σ_,_ : {l : Level} -> (X : Set l) -> (V : Set l) -> {Y : Set l} -> {X : Set l} -> {VX : (Set -> Set )} -> Set l +--Σ_,_ : Set l -> Set l -> {Y : Set l} -> (Set l -> Y) -> Y +--Σ_,_ : Set -> Set -> {Y : Set l} -> ? -> ? +--Σ_,_ X V = \{Y : Set l} -> (\(V : Set) -> Y) -> Y + +Σ_,_ : Set l -> (V : Set l) -> {v : V} -> {Y : Set l} -> (V -> Y) -> Y +Σ_,_ X V {v} = \{Y : Set l} -> \(vy : V -> Y) -> vy v + +--⟨_,_⟩ : (U : Set l) -> (u : U) -> (Σ U , V) +--⟨_,_⟩ : Set l -> ? -> {Y : Set l} -> ? -> ? -> ? +--⟨_,_⟩ U u = \{Y : Set l} -> (x : (\{X} -> \(v : V) -> y)) -> x U u +--⟨_,_⟩ U u = \{Y : Set l} -> \(x : (\{X : Set l} -> (VY : (V -> Y)))) -> x U u