view boolean.agda @ 13:5a81867278af default tip

Imporve proof for sum-sym
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Fri, 23 May 2014 13:53:30 +0900
parents ca2e9f7a7898
children
line wrap: on
line source

open import systemT
open import Relation.Binary.PropositionalEquality

module boolean where

_and_ : Bool -> Bool -> Bool
T and b = b
F and _ = F

_or_ : Bool -> Bool -> Bool
T or _ = T
F or b = b

not : Bool -> Bool
not T = F
not F = T

De-Morgan's-laws : (a b : Bool) -> (not a) and (not b) ≡ not (a or b)
De-Morgan's-laws T T = refl
De-Morgan's-laws T F = refl
De-Morgan's-laws F T = refl
De-Morgan's-laws F F = refl