Mercurial > hg > Members > atton > agda > systemT
changeset 8:e191792472f8
Try proof mult-sym. but not completed.
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 21 May 2014 21:11:34 +0900 |
parents | f922e687f3a1 |
children | 8ad92d830679 |
files | int.agda |
diffstat | 1 files changed, 90 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/int.agda Wed May 21 16:05:50 2014 +0900 +++ b/int.agda Wed May 21 21:11:34 2014 +0900 @@ -14,6 +14,11 @@ n + O = n n + (S m) = S (n + m) +left-add-zero : (n : Int) -> O + n ≡ n +left-add-zero O = refl +left-add-zero (S n) = cong S (left-add-zero n) + + left-increment : (n m : Int) -> (S n) + m ≡ S (n + m) left-increment n O = refl left-increment n (S m) = cong S (left-increment n m) @@ -51,4 +56,88 @@ _*_ : Int -> Int -> Int n * O = O n * (S O) = n -n * (S m) = n + (n * m) \ No newline at end of file +n * (S m) = n + (n * m) + +right-mult-zero : (n : Int) -> n * O ≡ O +right-mult-zero n = refl + +right-mult-one : (n : Int) -> n * (S O) ≡ n +right-mult-one n = refl + +right-mult-distr-one : (n m : Int) -> n * (S m) ≡ n + (n * m) +right-mult-distr-one O O = refl +right-mult-distr-one O (S m) = refl +right-mult-distr-one (S n) O = refl +right-mult-distr-one (S n) (S m) = refl + + +left-mult-zero : (n : Int) -> O * n ≡ O +left-mult-zero O = refl +left-mult-zero (S n) = begin + O * (S n) + ≡⟨ right-mult-distr-one O n ⟩ + O + (O * n) + ≡⟨ sum-sym O (O * n) ⟩ + (O * n) + O + ≡⟨ refl ⟩ + (O * n) + ≡⟨ left-mult-zero n ⟩ + O + ∎ + +left-mult-one : (n : Int) -> (S O) * n ≡ n +left-mult-one O = refl +left-mult-one (S n) = begin + (S O) * S n + ≡⟨ right-mult-distr-one (S O) n ⟩ + (S O) + ((S O) * n) + ≡⟨ cong (_+_ (S O)) (left-mult-one n) ⟩ + (S O) + n + ≡⟨ sum-sym (S O) n ⟩ + n + (S O) + ≡⟨ refl ⟩ + S n + ∎ + + +left-mult-distr-one : (n m : Int) -> (S n) * m ≡ m + (n * m) +left-mult-distr-one O O = refl +left-mult-distr-one O (S m) = begin + (S O) * S m + ≡⟨ left-mult-one (S m) ⟩ + S m + ≡⟨ refl ⟩ + S m + O + ≡⟨ cong (_+_ (S m)) (sym (left-mult-zero (S m))) ⟩ + S m + (O * S m) + ∎ +left-mult-distr-one (S n) O = refl +left-mult-distr-one (S n) (S m) = begin + S (S n) * S m + ≡⟨ right-mult-distr-one (S (S n)) m ⟩ + (S (S n)) + ((S (S n)) * m) + ≡⟨ cong (\x -> (S (S n)) + x) (left-mult-distr-one (S n) m) ⟩ + S (S n) + (m + S n * m) + ≡⟨ {!!} ⟩ + S m + S n * S m + ∎ + + + +mult-sym : (n m : Int) -> n * m ≡ m * n +mult-sym n O = begin + n * O + ≡⟨ refl ⟩ + O + ≡⟨ sym (left-mult-zero n) ⟩ + O * n + ∎ +mult-sym n (S m) = begin + n * (S m) + ≡⟨ right-mult-distr-one n m ⟩ + n + (n * m) + ≡⟨ cong (\x -> n + x ) (mult-sym n m) ⟩ + n + (m * n) + ≡⟨ sym (left-mult-distr-one m n) ⟩ + (S m) * n + ∎