Mercurial > hg > Members > atton > delta_monad
comparison agda/delta.agda @ 104:ebd0d6e2772c
Trying redenition Delta with length constraints
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 26 Jan 2015 23:00:05 +0900 |
parents | dfe8c67390bd |
children | e6499a50ccbd |
comparison
equal
deleted
inserted
replaced
103:a271f3ff1922 | 104:ebd0d6e2772c |
---|---|
1 open import list | 1 open import list |
2 open import basic | 2 open import basic |
3 open import nat | 3 open import nat |
4 open import revision | |
4 open import laws | 5 open import laws |
5 | 6 |
6 open import Level | 7 open import Level |
7 open import Relation.Binary.PropositionalEquality | 8 open import Relation.Binary.PropositionalEquality |
8 open ≡-Reasoning | 9 open ≡-Reasoning |
9 | 10 |
10 module delta where | 11 module delta where |
11 | 12 |
13 data Delta {l : Level} (A : Set l) : (Rev -> (Set l)) where | |
14 mono : A -> Delta A init | |
15 delta : {v : Rev} -> A -> Delta A v -> Delta A (commit v) | |
12 | 16 |
13 data Delta {l : Level} (A : Set l) : (Set l) where | 17 deltaAppend : {l : Level} {A : Set l} {n m : Rev} -> Delta A n -> Delta A m -> Delta A (merge n m) |
14 mono : A -> Delta A | |
15 delta : A -> Delta A -> Delta A | |
16 | |
17 deltaAppend : {l : Level} {A : Set l} -> Delta A -> Delta A -> Delta A | |
18 deltaAppend (mono x) d = delta x d | 18 deltaAppend (mono x) d = delta x d |
19 deltaAppend (delta x d) ds = delta x (deltaAppend d ds) | 19 deltaAppend (delta x d) ds = delta x (deltaAppend d ds) |
20 | 20 |
21 headDelta : {l : Level} {A : Set l} -> Delta A -> A | 21 headDelta : {l : Level} {A : Set l} {n : Rev} -> Delta A n -> A |
22 headDelta (mono x) = x | 22 headDelta (mono x) = x |
23 headDelta (delta x _) = x | 23 headDelta (delta x _) = x |
24 | 24 |
25 tailDelta : {l : Level} {A : Set l} -> Delta A -> Delta A | 25 tailDelta : {l : Level} {A : Set l} {n : Rev} -> Delta A (commit n) -> Delta A n |
26 tailDelta (mono x) = mono x | |
27 tailDelta (delta _ d) = d | 26 tailDelta (delta _ d) = d |
28 | 27 |
29 n-tail : {l : Level} {A : Set l} -> Nat -> ((Delta A) -> (Delta A)) | |
30 n-tail O = id | |
31 n-tail (S n) = tailDelta ∙ (n-tail n) | |
32 | 28 |
33 | 29 |
34 -- Functor | 30 -- Functor |
35 delta-fmap : {l : Level} {A B : Set l} -> (A -> B) -> (Delta A) -> (Delta B) | 31 delta-fmap : {l : Level} {A B : Set l} {n : Rev} -> (A -> B) -> (Delta A n) -> (Delta B n) |
36 delta-fmap f (mono x) = mono (f x) | 32 delta-fmap f (mono x) = mono (f x) |
37 delta-fmap f (delta x d) = delta (f x) (delta-fmap f d) | 33 delta-fmap f (delta x d) = delta (f x) (delta-fmap f d) |
38 | 34 |
39 | 35 |
40 | 36 |
41 -- Monad (Category) | 37 -- Monad (Category) |
42 delta-eta : {l : Level} {A : Set l} -> A -> Delta A | 38 delta-eta : {l : Level} {A : Set l} {v : Rev} -> A -> Delta A v |
43 delta-eta x = mono x | 39 delta-eta {v = init} x = mono x |
40 delta-eta {v = commit v} x = delta x (delta-eta {v = v} x) | |
44 | 41 |
45 delta-bind : {l : Level} {A B : Set l} -> (Delta A) -> (A -> Delta B) -> Delta B | 42 delta-bind : {l : Level} {A B : Set l} {n : Rev} -> (Delta A n) -> (A -> Delta B n) -> Delta B n |
46 delta-bind (mono x) f = f x | 43 delta-bind (mono x) f = f x |
47 delta-bind (delta x d) f = delta (headDelta (f x)) (delta-bind d (tailDelta ∙ f)) | 44 delta-bind (delta x d) f = delta (headDelta (f x)) (tailDelta (f x)) |
48 | 45 |
49 delta-mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A | 46 delta-mu : {l : Level} {A : Set l} {n : Rev} -> (Delta (Delta A n) n) -> Delta A n |
50 delta-mu d = delta-bind d id | 47 delta-mu d = delta-bind d id |
51 | 48 |
52 | 49 |
53 | 50 |
51 {- | |
54 -- Monad (Haskell) | 52 -- Monad (Haskell) |
55 delta-return : {l : Level} {A : Set l} -> A -> Delta A | 53 delta-return : {l : Level} {A : Set l} -> A -> Delta A (S O) |
56 delta-return = delta-eta | 54 delta-return = delta-eta |
57 | 55 |
58 _>>=_ : {l : Level} {A B : Set l} -> | 56 _>>=_ : {l : Level} {A B : Set l} {n : Nat} -> |
59 (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B) | 57 (x : Delta A n) -> (f : A -> (Delta B n)) -> (Delta B n) |
60 (mono x) >>= f = f x | 58 d >>= f = delta-bind d f |
61 (delta x d) >>= f = delta (headDelta (f x)) (d >>= (tailDelta ∙ f)) | |
62 | 59 |
60 -} | |
63 | 61 |
64 | 62 {- |
65 -- proofs | 63 -- proofs |
66 | 64 |
67 -- sub-proofs | 65 -- sub-proofs |
68 | 66 |
69 n-tail-plus : {l : Level} {A : Set l} -> (n : Nat) -> ((n-tail {l} {A} n) ∙ tailDelta) ≡ n-tail (S n) | 67 n-tail-plus : {l : Level} {A : Set l} -> (n : Nat) -> ((n-tail {l} {A} n) ∙ tailDelta) ≡ n-tail (S n) |
120 ((n-tail n) ∙ tailDelta) (delta (f x) (delta-fmap f d)) ≡⟨ refl ⟩ | 118 ((n-tail n) ∙ tailDelta) (delta (f x) (delta-fmap f d)) ≡⟨ refl ⟩ |
121 n-tail n (delta-fmap f d) ≡⟨ n-tail-natural-transformation n f d ⟩ | 119 n-tail n (delta-fmap f d) ≡⟨ n-tail-natural-transformation n f d ⟩ |
122 delta-fmap f (n-tail n d) ≡⟨ refl ⟩ | 120 delta-fmap f (n-tail n d) ≡⟨ refl ⟩ |
123 delta-fmap f (((n-tail n) ∙ tailDelta) (delta x d)) ≡⟨ cong (\t -> delta-fmap f (t (delta x d))) (n-tail-plus n) ⟩ | 121 delta-fmap f (((n-tail n) ∙ tailDelta) (delta x d)) ≡⟨ cong (\t -> delta-fmap f (t (delta x d))) (n-tail-plus n) ⟩ |
124 delta-fmap f (n-tail (S n) (delta x d)) ∎ | 122 delta-fmap f (n-tail (S n) (delta x d)) ∎ |
123 -} |