Mercurial > hg > Members > atton > delta_monad
view agda/deltaM.agda @ 121:673e1ca0d1a9
Refactor monad definition
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Feb 2015 12:11:24 +0900 |
parents | 0f9ecd118a03 |
children | 5902b2a24abf |
line wrap: on
line source
open import Level open import basic open import delta open import delta.functor open import nat open import laws module deltaM where -- DeltaM definitions data DeltaM {l : Level} {T : Set l -> Set l} {F : Functor T} (M : Monad T F) (A : Set l) : (Nat -> Set l) where deltaM : {n : Nat} -> Delta (T A) (S n) -> DeltaM M A (S n) -- DeltaM utils unDeltaM : {l : Level} {A : Set l} {n : Nat} {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> (DeltaM M A (S n)) -> Delta (T A) (S n) unDeltaM (deltaM d) = d headDeltaM : {l : Level} {A : Set l} {n : Nat} {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> DeltaM M A (S n) -> T A headDeltaM (deltaM d) = headDelta d tailDeltaM : {l : Level} {A : Set l} {n : Nat} {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> DeltaM M A (S (S n)) -> DeltaM M A (S n) tailDeltaM {_} {n} (deltaM d) = deltaM (tailDelta d) appendDeltaM : {l : Level} {A : Set l} {n m : Nat} {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> DeltaM M A (S n) -> DeltaM M A (S m) -> DeltaM M A ((S n) + (S m)) appendDeltaM (deltaM d) (deltaM dd) = deltaM (deltaAppend d dd) dmap : {l : Level} {A B : Set l} {n : Nat} {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> (T A -> B) -> DeltaM M A (S n) -> Delta B (S n) dmap f (deltaM d) = delta-fmap f d -- functor definitions open Functor deltaM-fmap : {l : Level} {A B : Set l} {n : Nat} {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> (A -> B) -> DeltaM M A (S n) -> DeltaM M B (S n) deltaM-fmap {l} {A} {B} {n} {M} {functorM} f (deltaM d) = deltaM (fmap delta-is-functor (fmap functorM f) d) -- monad definitions open Monad deltaM-eta : {l : Level} {A : Set l} {n : Nat} {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> A -> (DeltaM M A (S n)) deltaM-eta {n = n} {M = M} x = deltaM (delta-eta {n = n} (eta M x)) deltaM-mu : {l : Level} {A : Set l} {n : Nat} {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> DeltaM M (DeltaM M A (S n)) (S n) -> DeltaM M A (S n) deltaM-mu {n = O} {F = F} {M = M} d = deltaM (mono (mu M (fmap F headDeltaM (headDeltaM d)))) deltaM-mu {n = S n} {F = F} {M = M} d = deltaM (delta (mu M (fmap F headDeltaM (headDeltaM d))) (unDeltaM (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d)))))