annotate agda/deltaM.agda @ 121:673e1ca0d1a9

Refactor monad definition
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Mon, 02 Feb 2015 12:11:24 +0900
parents 0f9ecd118a03
children 5902b2a24abf
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
89
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 open import Level
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2
94
bcd4fe52a504 Rewrite monad definitions for delta/deltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
3 open import basic
89
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 open import delta
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import delta.functor
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import nat
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open import laws
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 module deltaM where
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 -- DeltaM definitions
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
13 data DeltaM {l : Level} {T : Set l -> Set l} {F : Functor T}
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
14 (M : Monad T F) (A : Set l) : (Nat -> Set l) where
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
15 deltaM : {n : Nat} -> Delta (T A) (S n) -> DeltaM M A (S n)
89
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 -- DeltaM utils
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
118
53cb21845dea Prove association-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
20 unDeltaM : {l : Level} {A : Set l} {n : Nat}
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
21 {T : Set l -> Set l} {F : Functor T} {M : Monad T F} ->
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
22 (DeltaM M A (S n)) -> Delta (T A) (S n)
118
53cb21845dea Prove association-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
23 unDeltaM (deltaM d) = d
53cb21845dea Prove association-law for DeltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 116
diff changeset
24
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
25
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
26
109
5bd5f4a7ce8d Redefine DeltaM that length fixed
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 104
diff changeset
27 headDeltaM : {l : Level} {A : Set l} {n : Nat}
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
28 {T : Set l -> Set l} {F : Functor T} {M : Monad T F} ->
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
29 DeltaM M A (S n) -> T A
100
d8cd880f1d78 Redefine some functions DeltaM in agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
30 headDeltaM (deltaM d) = headDelta d
d8cd880f1d78 Redefine some functions DeltaM in agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
31
89
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
33
109
5bd5f4a7ce8d Redefine DeltaM that length fixed
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 104
diff changeset
34 tailDeltaM : {l : Level} {A : Set l} {n : Nat}
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
35 {T : Set l -> Set l} {F : Functor T} {M : Monad T F} ->
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
36 DeltaM M A (S (S n)) -> DeltaM M A (S n)
104
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
37 tailDeltaM {_} {n} (deltaM d) = deltaM (tailDelta d)
89
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
40
109
5bd5f4a7ce8d Redefine DeltaM that length fixed
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 104
diff changeset
41 appendDeltaM : {l : Level} {A : Set l} {n m : Nat}
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
42 {T : Set l -> Set l} {F : Functor T} {M : Monad T F} ->
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
43 DeltaM M A (S n) -> DeltaM M A (S m) -> DeltaM M A ((S n) + (S m))
104
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
44 appendDeltaM (deltaM d) (deltaM dd) = deltaM (deltaAppend d dd)
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
45
89
5411ce26d525 Defining DeltaM in Agda...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents:
diff changeset
46
115
e6bcc7467335 Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 112
diff changeset
47 dmap : {l : Level} {A B : Set l} {n : Nat}
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
48 {T : Set l -> Set l} {F : Functor T} {M : Monad T F} ->
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
49 (T A -> B) -> DeltaM M A (S n) -> Delta B (S n)
115
e6bcc7467335 Temporary commit : Proving association-law ...
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 112
diff changeset
50 dmap f (deltaM d) = delta-fmap f d
90
55d11ce7e223 Unify levels on data type. only use suc to proofs
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 89
diff changeset
51
94
bcd4fe52a504 Rewrite monad definitions for delta/deltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
52
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
53
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
54
94
bcd4fe52a504 Rewrite monad definitions for delta/deltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
55 -- functor definitions
90
55d11ce7e223 Unify levels on data type. only use suc to proofs
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 89
diff changeset
56 open Functor
109
5bd5f4a7ce8d Redefine DeltaM that length fixed
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 104
diff changeset
57 deltaM-fmap : {l : Level} {A B : Set l} {n : Nat}
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
58 {T : Set l -> Set l} {F : Functor T} {M : Monad T F} ->
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
59 (A -> B) -> DeltaM M A (S n) -> DeltaM M B (S n)
104
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
60 deltaM-fmap {l} {A} {B} {n} {M} {functorM} f (deltaM d) = deltaM (fmap delta-is-functor (fmap functorM f) d)
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
61
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
62
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
63
94
bcd4fe52a504 Rewrite monad definitions for delta/deltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
64
bcd4fe52a504 Rewrite monad definitions for delta/deltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
65 -- monad definitions
bcd4fe52a504 Rewrite monad definitions for delta/deltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
66 open Monad
bcd4fe52a504 Rewrite monad definitions for delta/deltaM
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 90
diff changeset
67
109
5bd5f4a7ce8d Redefine DeltaM that length fixed
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 104
diff changeset
68 deltaM-eta : {l : Level} {A : Set l} {n : Nat}
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
69 {T : Set l -> Set l} {F : Functor T} {M : Monad T F} ->
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
70 A -> (DeltaM M A (S n))
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
71 deltaM-eta {n = n} {M = M} x = deltaM (delta-eta {n = n} (eta M x))
100
d8cd880f1d78 Redefine some functions DeltaM in agda
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 95
diff changeset
72
104
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
73
ebd0d6e2772c Trying redenition Delta with length constraints
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 103
diff changeset
74
120
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
75 deltaM-mu : {l : Level} {A : Set l} {n : Nat}
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
76 {T : Set l -> Set l} {F : Functor T} {M : Monad T F} ->
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
77 DeltaM M (DeltaM M A (S n)) (S n) -> DeltaM M A (S n)
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
78 deltaM-mu {n = O} {F = F} {M = M} d = deltaM (mono (mu M (fmap F headDeltaM (headDeltaM d))))
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
79 deltaM-mu {n = S n} {F = F} {M = M} d = deltaM (delta (mu M (fmap F headDeltaM (headDeltaM d)))
0f9ecd118a03 Refactor DeltaM definition
Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
parents: 118
diff changeset
80 (unDeltaM (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d)))))