Mercurial > hg > Members > atton > delta_monad
changeset 118:53cb21845dea
Prove association-law for DeltaM
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Feb 2015 11:54:23 +0900 |
parents | 6f86b55bf8b4 |
children | f2187ad63791 |
files | agda/deltaM.agda agda/deltaM/monad.agda |
diffstat | 2 files changed, 138 insertions(+), 34 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/deltaM.agda Mon Feb 02 09:57:37 2015 +0900 +++ b/agda/deltaM.agda Mon Feb 02 11:54:23 2015 +0900 @@ -21,6 +21,11 @@ -- DeltaM utils +unDeltaM : {l : Level} {A : Set l} {n : Nat} + {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} -> + (DeltaM M {functorM} {monadM} A (S n)) -> Delta (M A) (S n) +unDeltaM (deltaM d) = d + headDeltaM : {l : Level} {A : Set l} {n : Nat} {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} -> DeltaM M {functorM} {monadM} A (S n) -> M A @@ -69,9 +74,9 @@ {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} -> DeltaM M {functorM} {monadM} (DeltaM M {functorM} {monadM} A (S n)) (S n) -> DeltaM M {functorM} {monadM} A (S n) -deltaM-mu {n = O} {functorM = fm} {monadM = mm} d = deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d)))) -deltaM-mu {n = S n} {functorM = fm} {monadM = mm} d = appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) - (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))) +deltaM-mu {n = O} {functorM = fm} {monadM = mm} d = deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d)))) +deltaM-mu {n = S n} {functorM = fm} {monadM = mm} d = deltaM (delta (mu mm (fmap fm headDeltaM (headDeltaM d))) + (unDeltaM (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))) deltaM-bind : {l : Level} {A B : Set l}
--- a/agda/deltaM/monad.agda Mon Feb 02 09:57:37 2015 +0900 +++ b/agda/deltaM/monad.agda Mon Feb 02 11:54:23 2015 +0900 @@ -17,20 +17,12 @@ open Monad --- proof utils -deconstruct : {l : Level} {A : Set l} {n : Nat} - {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} - (d : DeltaM M {fm} {mm} A (S n)) -> Delta (M A) (S n) -deconstruct (deltaM d) = d - - - -- sub proofs deconstruct-id : {l : Level} {A : Set l} {n : Nat} {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} - (d : DeltaM M {fm} {mm} A (S n)) -> deltaM (deconstruct d) ≡ d -deconstruct-id {n = O} (deltaM x) = refl + (d : DeltaM M {fm} {mm} A (S n)) -> deltaM (unDeltaM d) ≡ d +deconstruct-id {n = O} (deltaM x) = refl deconstruct-id {n = S n} (deltaM x) = refl @@ -57,26 +49,22 @@ fmap-tailDeltaM-with-deltaM-eta {n = O} d = refl fmap-tailDeltaM-with-deltaM-eta {n = S n} d = refl +fmap-headDeltaM-with-deltaM-mu : {l : Level} {A : Set l} {n : Nat} + {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} + (x : M (DeltaM M (DeltaM M {functorM} {monadM} A (S n)) (S n))) -> + fmap functorM (headDeltaM ∙ deltaM-mu) x ≡ fmap functorM (((mu monadM) ∙ (fmap functorM headDeltaM)) ∙ headDeltaM) x +fmap-headDeltaM-with-deltaM-mu {n = O} x = refl +fmap-headDeltaM-with-deltaM-mu {n = S n} x = refl -fmap-headDeltaM-with-deltaM-mu : {l : Level} {A : Set l} {n : Nat} - {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} - (x : M (DeltaM M {fm} {mm} (DeltaM M A (S n)) (S n))) -> - fmap fm (headDeltaM ∙ deltaM-mu) x ≡ fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x -fmap-headDeltaM-with-deltaM-mu {l} {A} {O} {M} {fm} {mm} x = refl -fmap-headDeltaM-with-deltaM-mu {l} {A} {S n} {M} {fm} {mm} x = begin - fmap fm (headDeltaM ∙ deltaM-mu) x ≡⟨ refl ⟩ - fmap fm (headDeltaM ∙ (\d -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) - (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))) x ≡⟨ refl ⟩ - fmap fm (\d -> headDeltaM (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) - (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))) x - ≡⟨ refl ⟩ - fmap fm (\d -> headDeltaM (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) - (deltaM (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))))) x - ≡⟨ {!!} ⟩ - fmap fm (\d -> headDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d)))))) x ≡⟨ refl ⟩ - fmap fm (\d -> (mu mm (fmap fm headDeltaM (headDeltaM d)))) x ≡⟨ {!!} ⟩ - fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x - ∎ + +fmap-tailDeltaM-with-deltaM-mu : {l : Level} {A : Set l} {n : Nat} + {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} + (d : DeltaM M {functorM} {monadM} (DeltaM M {functorM} {monadM} (DeltaM M A (S (S n))) (S (S n))) (S n)) -> + deltaM-fmap (tailDeltaM ∙ deltaM-mu) d ≡ deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) d +fmap-tailDeltaM-with-deltaM-mu {n = O} (deltaM (mono x)) = refl +fmap-tailDeltaM-with-deltaM-mu {n = S n} (deltaM d) = refl + + @@ -105,6 +93,12 @@ ∎ -} +postulate deltaM-mu-is-nt : {l : Level} {A B : Set l} {n : Nat} + {T : Set l -> Set l} {F : Functor T} {M : Monad T F} + (f : A -> B) -> + (d : DeltaM T {F} {M} (DeltaM T A (S n)) (S n)) -> + deltaM-fmap f (deltaM-mu d) ≡ deltaM-mu (deltaM-fmap (deltaM-fmap f) d) + postulate deltaM-right-unity-law : {l : Level} {A : Set l} {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} {n : Nat} (d : DeltaM M {functorM} {monadM} A (S n)) -> (deltaM-mu ∙ deltaM-eta) d ≡ id d @@ -265,7 +259,112 @@ deltaM-mu (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M (DeltaM M A (S O)) (S O)} {monadM = mm} (deltaM (mono x))))))) ≡⟨ refl ⟩ deltaM-mu (deltaM-mu (deltaM (mono x))) ∎ -} -deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = {!!} +deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = begin + deltaM-mu (deltaM-fmap deltaM-mu (deltaM (delta x d))) + ≡⟨ refl ⟩ + deltaM-mu (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d))) + ≡⟨ refl ⟩ + deltaM (delta (mu mm (fmap fm (headDeltaM {A = A} {monadM = mm}) (headDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d)))))) + (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d)))))))) + + ≡⟨ refl ⟩ + deltaM (delta (mu mm (fmap fm (headDeltaM {A = A} {monadM = mm}) (fmap fm deltaM-mu x))) + (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm de) (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d))))))) + (sym (covariant fm deltaM-mu headDeltaM x)) ⟩ + deltaM (delta (mu mm (fmap fm ((headDeltaM {A = A} {monadM = mm}) ∙ deltaM-mu) x)) + (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm de) + (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d))))))) + (fmap-headDeltaM-with-deltaM-mu {A = A} {monadM = mm} x) ⟩ + deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))))) + ≡⟨ refl ⟩ + deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-fmap deltaM-mu (deltaM d)))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {monadM = mm} (deltaM-mu de)))) + (sym (deltaM-covariant fm tailDeltaM deltaM-mu (deltaM d))) ⟩ + deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap (tailDeltaM ∙ deltaM-mu) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {monadM = mm} (deltaM-mu de)))) + (fmap-tailDeltaM-with-deltaM-mu (deltaM d)) ⟩ + deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm de) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) + (covariant fm headDeltaM ((mu mm) ∙ (fmap fm headDeltaM)) x) ⟩ + deltaM (delta (mu mm (((fmap fm ((mu mm) ∙ (fmap fm headDeltaM))) ∙ (fmap fm headDeltaM)) x)) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ refl ⟩ + deltaM (delta (mu mm (((fmap fm ((mu mm) ∙ (fmap fm headDeltaM))) (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm de) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) + (covariant fm (fmap fm headDeltaM) (mu mm) (fmap fm headDeltaM x)) ⟩ + + deltaM (delta (mu mm ((((fmap fm (mu mm)) ∙ (fmap fm (fmap fm headDeltaM))) (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ refl ⟩ + deltaM (delta (mu mm (fmap fm (mu mm) (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta de (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) + (association-law mm (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x))) ⟩ + deltaM (delta (mu mm (mu mm (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm de) (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) + (mu-is-nt mm headDeltaM (fmap fm headDeltaM x)) ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) (unDeltaM {monadM = mm} (deltaM-mu de)))) + (deltaM-covariant fm (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) tailDeltaM (deltaM d)) ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (((deltaM-fmap (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ (deltaM-fmap tailDeltaM)) (deltaM d)))))) + ≡⟨ refl ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (((deltaM-fmap (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) (deltaM-fmap tailDeltaM (deltaM d)))))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) (unDeltaM {monadM = mm} (deltaM-mu de)))) + (deltaM-covariant fm deltaM-mu (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))) ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (((deltaM-fmap deltaM-mu) ∙ (deltaM-fmap (deltaM-fmap tailDeltaM))) (deltaM-fmap tailDeltaM (deltaM d)))))) + ≡⟨ refl ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap deltaM-mu (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) (unDeltaM {monadM = mm} de))) + (deltaM-association-law M fm mm (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d)))) ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-mu (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))))))) + + ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu de)))) + (sym (deltaM-mu-is-nt tailDeltaM (deltaM-fmap tailDeltaM (deltaM d)))) ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))))) + ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM de))))) + (sym (deconstruct-id (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))) ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM + (deltaM (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))))))) + + + ≡⟨ refl ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (headDeltaM {monadM = mm} ((deltaM (delta (mu mm (fmap fm headDeltaM x)) + (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))))))) + (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ((deltaM (delta (mu mm (fmap fm headDeltaM x)) + (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))))))))) + + + ≡⟨ refl ⟩ + deltaM-mu (deltaM (delta (mu mm (fmap fm headDeltaM x)) + (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))) + ≡⟨ refl ⟩ + deltaM-mu (deltaM (delta (mu mm (fmap fm headDeltaM (headDeltaM {monadM = mm} (deltaM (delta x d))))) + (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM (deltaM (delta x d)))))))) + ≡⟨ refl ⟩ + deltaM-mu (deltaM-mu (deltaM (delta x d))) + ∎ {- deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = begin deltaM-mu (deltaM-fmap deltaM-mu (deltaM (delta x d))) ≡⟨ refl ⟩ @@ -340,6 +439,6 @@ left-unity-law = deltaM-left-unity-law; right-unity-law = (\x -> (sym (deltaM-right-unity-law x))) ; eta-is-nt = deltaM-eta-is-nt; - mu-is-nt = {!!}} + mu-is-nt = (\f x -> (sym (deltaM-mu-is-nt f x)))}