Mercurial > hg > Members > atton > delta_monad
changeset 117:6f86b55bf8b4
Temporary commit : Proving association-law ....
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Feb 2015 09:57:37 +0900 |
parents | f02c5ad4a327 |
children | 53cb21845dea |
files | agda/deltaM/monad.agda |
diffstat | 1 files changed, 106 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/deltaM/monad.agda Sun Feb 01 17:55:39 2015 +0900 +++ b/agda/deltaM/monad.agda Mon Feb 02 09:57:37 2015 +0900 @@ -17,8 +17,32 @@ open Monad +-- proof utils +deconstruct : {l : Level} {A : Set l} {n : Nat} + {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} + (d : DeltaM M {fm} {mm} A (S n)) -> Delta (M A) (S n) +deconstruct (deltaM d) = d + + + -- sub proofs +deconstruct-id : {l : Level} {A : Set l} {n : Nat} + {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} + (d : DeltaM M {fm} {mm} A (S n)) -> deltaM (deconstruct d) ≡ d +deconstruct-id {n = O} (deltaM x) = refl +deconstruct-id {n = S n} (deltaM x) = refl + + +headDeltaM-with-appendDeltaM : {l : Level} {A : Set l} {n m : Nat} + {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} + (d : DeltaM M {fm} {mm} A (S n)) -> (ds : DeltaM M {fm} {mm} A (S m)) -> + headDeltaM (appendDeltaM d ds) ≡ headDeltaM d +headDeltaM-with-appendDeltaM {l} {A} {n = O} {O} (deltaM (mono _)) (deltaM _) = refl +headDeltaM-with-appendDeltaM {l} {A} {n = O} {S m} (deltaM (mono _)) (deltaM _) = refl +headDeltaM-with-appendDeltaM {l} {A} {n = S n} {O} (deltaM (delta _ _)) (deltaM _) = refl +headDeltaM-with-appendDeltaM {l} {A} {n = S n} {S m} (deltaM (delta _ _)) (deltaM _) = refl + fmap-headDeltaM-with-deltaM-eta : {l : Level} {A : Set l} {n : Nat} {M : Set l -> Set l} {functorM : Functor M} {monadM : Monad M functorM} (x : M A) -> (fmap functorM ((headDeltaM {l} {A} {n} {M} {functorM} {monadM}) ∙ deltaM-eta) x) ≡ fmap functorM (eta monadM) x @@ -34,6 +58,28 @@ fmap-tailDeltaM-with-deltaM-eta {n = S n} d = refl +fmap-headDeltaM-with-deltaM-mu : {l : Level} {A : Set l} {n : Nat} + {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} + (x : M (DeltaM M {fm} {mm} (DeltaM M A (S n)) (S n))) -> + fmap fm (headDeltaM ∙ deltaM-mu) x ≡ fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x +fmap-headDeltaM-with-deltaM-mu {l} {A} {O} {M} {fm} {mm} x = refl +fmap-headDeltaM-with-deltaM-mu {l} {A} {S n} {M} {fm} {mm} x = begin + fmap fm (headDeltaM ∙ deltaM-mu) x ≡⟨ refl ⟩ + fmap fm (headDeltaM ∙ (\d -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) + (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))) x ≡⟨ refl ⟩ + fmap fm (\d -> headDeltaM (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) + (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))) x + ≡⟨ refl ⟩ + fmap fm (\d -> headDeltaM (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d))))) + (deltaM (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM d))))))) x + ≡⟨ {!!} ⟩ + fmap fm (\d -> headDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM d)))))) x ≡⟨ refl ⟩ + fmap fm (\d -> (mu mm (fmap fm headDeltaM (headDeltaM d)))) x ≡⟨ {!!} ⟩ + fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x + ∎ + + + -- main proofs postulate deltaM-eta-is-nt : {l : Level} {A B : Set l} {n : Nat} @@ -168,36 +214,24 @@ ∎ -} +postulate nya : {l : Level} {A : Set l} + (M : Set l -> Set l) (fm : Functor M) (mm : Monad M fm) + (d : DeltaM M {fm} {mm} (DeltaM M {fm} {mm} (DeltaM M {fm} {mm} A (S O)) (S O)) (S O)) -> + deltaM-mu (deltaM-fmap deltaM-mu d) ≡ deltaM-mu (deltaM-mu d) -fmap-headDeltaM-with-deltaM-mu : {l : Level} {A : Set l} {n : Nat} - {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} - (x : M (DeltaM M {fm} {mm} (DeltaM M {fm} {mm} A (S n)) (S n))) -> --- (fmap fm headDeltaM (fmap fm deltaM-mu x)) ≡ (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x))) --- fmap fm (headDeltaM ∙ deltaM-mu) x ≡ fmap fm (fmap fm ((mu mm) ∙ (fmap fm headDeltaM))) x - headDeltaM (deltaM-fmap deltaM-mu (deltaM (mono x))) ≡ deltaM (mono (mu mm (fmap fm headDeltaM x))) -fmap-headDeltaM-with-deltaM-mu {l} {A} {O} {M} {fm} {mm} x = {!!} -fmap-headDeltaM-with-deltaM-mu {n = S n} x = {!!} + -deltaM-mono : {l : Level} {A : Set l} - {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} - (d : M A) -> DeltaM M {fm} {mm} A (S O) -deltaM-mono x = deltaM (mono x) - -fmap-headDeltaM-with-deltaM-mono : {l : Level} {A : Set l} - {M : Set l -> Set l} {fm : Functor M} {mm : Monad M fm} - (x : M (M A)) -> - fmap fm ((headDeltaM {l} {A} {O} {M} {fm} {mm}) ∙ deltaM-mono) x ≡ x -fmap-headDeltaM-with-deltaM-mono {fm = fm} x = preserve-id fm x - - + deltaM-association-law : {l : Level} {A : Set l} {n : Nat} (M : Set l -> Set l) (fm : Functor M) (mm : Monad M fm) (d : DeltaM M {fm} {mm} (DeltaM M {fm} {mm} (DeltaM M {fm} {mm} A (S n)) (S n)) (S n)) -> deltaM-mu (deltaM-fmap deltaM-mu d) ≡ deltaM-mu (deltaM-mu d) -deltaM-association-law {l} {A} {O} M fm mm (deltaM (mono x)) = begin +deltaM-association-law {l} {A} {O} M fm mm (deltaM (mono x)) = nya {l} {A} M fm mm (deltaM (mono x)) +{- +begin deltaM-mu (deltaM-fmap deltaM-mu (deltaM (mono x))) ≡⟨ refl ⟩ deltaM-mu (deltaM (mono (fmap fm deltaM-mu x))) ≡⟨ refl ⟩ deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M A (S O)} {monadM = mm} (deltaM (mono (fmap fm deltaM-mu x))))))) ≡⟨ refl ⟩ @@ -230,21 +264,65 @@ deltaM-mu (deltaM (mono (mu mm (fmap fm headDeltaM x)))) ≡⟨ refl ⟩ deltaM-mu (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M (DeltaM M A (S O)) (S O)} {monadM = mm} (deltaM (mono x))))))) ≡⟨ refl ⟩ deltaM-mu (deltaM-mu (deltaM (mono x))) ∎ - -deltaM-association-law {n = S n} M fm mm (deltaM (delta x d)) = begin +-} +deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = {!!} +{- +deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = begin deltaM-mu (deltaM-fmap deltaM-mu (deltaM (delta x d))) ≡⟨ refl ⟩ deltaM-mu (deltaM (delta-fmap (fmap fm deltaM-mu) (delta x d))) ≡⟨ refl ⟩ deltaM-mu (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d))) ≡⟨ refl ⟩ appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) - (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))) ≡⟨ {!!} ⟩ + (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))) ≡⟨ refl ⟩ + appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) + (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))) + ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) de) + (sym (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) ⟩ + + appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) + (deltaM (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) + ≡⟨ refl ⟩ + deltaM (deltaAppend (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x)))) + (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) + ≡⟨ refl ⟩ + deltaM (delta (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))) + (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) + ≡⟨ {!!} ⟩ + appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) + (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))) + ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) + (deltaM-mu (deltaM-fmap tailDeltaM de))) + (sym (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))) ⟩ + appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) + (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))))) + ≡⟨ refl ⟩ appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) - (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))) ≡⟨ {!!} ⟩ + (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ( (deltaM (delta (mu mm (fmap fm headDeltaM x)) + (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))) + ≡⟨ refl ⟩ + appendDeltaM (deltaM (mono (mu mm (fmap fm (headDeltaM {monadM = mm}) (headDeltaM {monadM = mm} ((deltaM (delta (mu mm (fmap fm headDeltaM x)) + (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))))) + (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ( (deltaM (delta (mu mm (fmap fm headDeltaM x)) + (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))) + ≡⟨ refl ⟩ + deltaM-mu (deltaM (delta (mu mm (fmap fm headDeltaM x)) + (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) + ≡⟨ refl ⟩ + deltaM-mu (deltaM (deltaAppend (mono (mu mm (fmap fm headDeltaM x))) + (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) + ≡⟨ refl ⟩ + deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) + (deltaM (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) + ≡⟨ cong (\de -> deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) de)) + (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))) ⟩ + deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) + (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))) + ≡⟨ refl ⟩ deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))≡⟨ refl ⟩ deltaM-mu (deltaM-mu (deltaM (delta x d))) ∎ - +-} @@ -261,6 +339,7 @@ association-law = (deltaM-association-law M functorM monadM) ; left-unity-law = deltaM-left-unity-law; right-unity-law = (\x -> (sym (deltaM-right-unity-law x))) ; - eta-is-nt = deltaM-eta-is-nt } + eta-is-nt = deltaM-eta-is-nt; + mu-is-nt = {!!}}