Mercurial > hg > Members > atton > delta_monad
changeset 109:5bd5f4a7ce8d
Redefine DeltaM that length fixed
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Jan 2015 22:32:26 +0900 |
parents | d47aea3f9246 |
children | cd058dd89864 |
files | agda/deltaM.agda |
diffstat | 1 files changed, 29 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/deltaM.agda Wed Jan 28 22:26:01 2015 +0900 +++ b/agda/deltaM.agda Wed Jan 28 22:32:26 2015 +0900 @@ -4,7 +4,6 @@ open import delta open import delta.functor open import nat -open import revision open import laws module deltaM where @@ -16,33 +15,35 @@ {functorM : {l' : Level} -> Functor {l'} M} {monadM : {l' : Level} {A : Set l'} -> Monad {l'} M functorM} (A : Set l) - : (Rev -> Set l) where - deltaM : {v : Rev} -> Delta (M A) v -> DeltaM M {functorM} {monadM} A v + : (Nat -> Set l) where + deltaM : {n : Nat} -> Delta (M A) (S n) -> DeltaM M {functorM} {monadM} A (S n) -- DeltaM utils -headDeltaM : {l : Level} {A : Set l} {v : Rev} +headDeltaM : {l : Level} {A : Set l} {n : Nat} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M} {monadM : {l' : Level} -> Monad {l'} M functorM} - -> DeltaM M {functorM} {monadM} A v -> M A + -> DeltaM M {functorM} {monadM} A (S n) -> M A headDeltaM (deltaM d) = headDelta d -tailDeltaM : {l : Level} {A : Set l} {v : Rev} +tailDeltaM : {l : Level} {A : Set l} {n : Nat} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M} {monadM : {l' : Level} -> Monad {l'} M functorM} - -> DeltaM {l} M {functorM} {monadM} A (commit v) -> DeltaM M {functorM} {monadM} A v + -> DeltaM {l} M {functorM} {monadM} A (S (S n)) -> DeltaM M {functorM} {monadM} A (S n) tailDeltaM {_} {n} (deltaM d) = deltaM (tailDelta d) -appendDeltaM : {l : Level} {A : Set l} {n m : Rev} +appendDeltaM : {l : Level} {A : Set l} {n m : Nat} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M} - {monadM : {l' : Level} -> Monad {l'} M functorM} - -> DeltaM M {functorM} {monadM} A n -> DeltaM M {functorM} {monadM} A m -> DeltaM M {functorM} {monadM} A (merge n m) + {monadM : {l' : Level} -> Monad {l'} M functorM} -> + DeltaM M {functorM} {monadM} A (S n) -> + DeltaM M {functorM} {monadM} A (S m) -> + DeltaM M {functorM} {monadM} A ((S n) + (S m)) appendDeltaM (deltaM d) (deltaM dd) = deltaM (deltaAppend d dd) @@ -50,11 +51,11 @@ -- functor definitions open Functor -deltaM-fmap : {l : Level} {A B : Set l} {n : Rev} +deltaM-fmap : {l : Level} {A B : Set l} {n : Nat} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M} {monadM : {l' : Level} -> Monad {l'} M functorM} - -> (A -> B) -> DeltaM M {functorM} {monadM} A n -> DeltaM M {functorM} {monadM} B n + -> (A -> B) -> DeltaM M {functorM} {monadM} A (S n) -> DeltaM M {functorM} {monadM} B (S n) deltaM-fmap {l} {A} {B} {n} {M} {functorM} f (deltaM d) = deltaM (fmap delta-is-functor (fmap functorM f) d) @@ -63,29 +64,30 @@ -- monad definitions open Monad -deltaM-eta : {l : Level} {A : Set l} {v : Rev} +deltaM-eta : {l : Level} {A : Set l} {n : Nat} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M} - {monadM : {l' : Level} -> Monad {l'} M functorM} - -> A -> (DeltaM M {functorM} {monadM} A v) -deltaM-eta {v = init} {monadM = mm} x = deltaM (mono (eta mm x)) -deltaM-eta {v = (commit v)} {monadM = mm} x = appendDeltaM (deltaM (mono (eta mm x))) - (deltaM-eta {v = v} x) + {monadM : {l' : Level} -> Monad {l'} M functorM} -> + A -> (DeltaM M {functorM} {monadM} A (S n)) +deltaM-eta {n = n} {monadM = mm} x = deltaM (delta-eta {n = n} (eta mm x)) -deltaM-bind : {l : Level} {A B : Set l} {v : Rev} - {M : {l' : Level} -> Set l' -> Set l'} - {functorM : {l' : Level} -> Functor {l'} M} - {monadM : {l' : Level} -> Monad {l'} M functorM} - -> (DeltaM M {functorM} {monadM} A v) -> (A -> DeltaM M {functorM} {monadM} B v) -> DeltaM M {functorM} {monadM} B v -deltaM-bind {v = init} {monadM = mm} (deltaM (mono x)) f = deltaM (mono (bind mm x (headDeltaM ∙ f))) -deltaM-bind {v = commit v} {monadM = mm} (deltaM (delta x d)) f = appendDeltaM (deltaM (mono (bind mm x (headDeltaM ∙ f)))) +deltaM-bind : {l : Level} {A B : Set l} + {n : Nat} + {M : {l' : Level} -> Set l' -> Set l'} + {functorM : {l' : Level} -> Functor {l'} M} + {monadM : {l' : Level} -> Monad {l'} M functorM} -> + (DeltaM M {functorM} {monadM} A (S n)) -> + (A -> DeltaM M {functorM} {monadM} B (S n)) + -> DeltaM M {functorM} {monadM} B (S n) +deltaM-bind {n = O} {monadM = mm} (deltaM (mono x)) f = deltaM (mono (bind mm x (headDeltaM ∙ f))) +deltaM-bind {n = S n} {monadM = mm} (deltaM (delta x d)) f = appendDeltaM (deltaM (mono (bind mm x (headDeltaM ∙ f)))) (deltaM-bind (deltaM d) (tailDeltaM ∙ f)) -deltaM-mu : {l : Level} {A : Set l} {v : Rev} +deltaM-mu : {l : Level} {A : Set l} {n : Nat} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M} {monadM : {l' : Level} -> Monad {l'} M functorM} - -> (DeltaM M {functorM} {monadM} (DeltaM M {functorM} {monadM} A v) v) -> DeltaM M {functorM} {monadM} A v + -> (DeltaM M (DeltaM M {functorM} {monadM} A (S n)) (S n)) -> DeltaM M {functorM} {monadM} A (S n) deltaM-mu d = deltaM-bind d id