Mercurial > hg > Members > atton > delta_monad
changeset 110:cd058dd89864
Rewrite Functor-laws for DeltaM
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Jan 2015 22:36:34 +0900 |
parents | 5bd5f4a7ce8d |
children | 9fe3d0bd1149 |
files | agda/deltaM/functor.agda |
diffstat | 1 files changed, 15 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/deltaM/functor.agda Wed Jan 28 22:32:26 2015 +0900 +++ b/agda/deltaM/functor.agda Wed Jan 28 22:36:34 2015 +0900 @@ -7,27 +7,26 @@ open import delta.functor open import deltaM open import nat -open import revision open import laws open Functor module deltaM.functor where -deltaM-preserve-id : {l : Level} {A : Set l} {n : Rev} +deltaM-preserve-id : {l : Level} {A : Set l} {n : Nat} {M : {l' : Level} -> Set l' -> Set l'} (functorM : {l' : Level} -> Functor {l'} M) {monadM : {l' : Level} -> Monad {l'} M functorM} - -> (d : DeltaM M {functorM} {monadM} A n) -> deltaM-fmap id d ≡ id d + -> (d : DeltaM M {functorM} {monadM} A (S n)) -> deltaM-fmap id d ≡ id d deltaM-preserve-id functorM (deltaM (mono x)) = begin deltaM-fmap id (deltaM (mono x)) ≡⟨ refl ⟩ deltaM (fmap delta-is-functor (fmap functorM id) (mono x)) ≡⟨ refl ⟩ - deltaM (mono (fmap functorM id x)) ≡⟨ cong (\x -> deltaM (mono x)) (preserve-id functorM x) ⟩ + deltaM (mono (fmap functorM id x)) ≡⟨ cong (\x -> deltaM (mono x)) (preserve-id functorM x) ⟩ deltaM (mono (id x)) ≡⟨ cong (\x -> deltaM (mono x)) refl ⟩ deltaM (mono x) ∎ deltaM-preserve-id functorM (deltaM (delta x d)) = begin - deltaM-fmap id (deltaM (delta x d)) - ≡⟨ refl ⟩ + deltaM-fmap id (deltaM (delta x d)) + ≡⟨ refl ⟩ deltaM (fmap delta-is-functor (fmap functorM id) (delta x d)) ≡⟨ refl ⟩ deltaM (delta (fmap functorM id x) (fmap delta-is-functor (fmap functorM id) d)) @@ -44,20 +43,20 @@ ∎ -deltaM-covariant : {l : Level} {A B C : Set l} {n : Rev} -> +deltaM-covariant : {l : Level} {A B C : Set l} {n : Nat} -> {M : {l' : Level} -> Set l' -> Set l'} (functorM : {l' : Level} -> Functor {l'} M) {monadM : {l' : Level} -> Monad {l'} M functorM} - (f : B -> C) -> (g : A -> B) -> (d : DeltaM M {functorM} {monadM} A n) -> + (f : B -> C) -> (g : A -> B) -> (d : DeltaM M {functorM} {monadM} A (S n)) -> (deltaM-fmap (f ∙ g)) d ≡ ((deltaM-fmap f) ∙ (deltaM-fmap g)) d deltaM-covariant functorM f g (deltaM (mono x)) = begin - deltaM-fmap (f ∙ g) (deltaM (mono x)) ≡⟨ refl ⟩ - deltaM (delta-fmap (fmap functorM (f ∙ g)) (mono x)) ≡⟨ refl ⟩ - deltaM (mono (fmap functorM (f ∙ g) x)) ≡⟨ cong (\x -> (deltaM (mono x))) (covariant functorM g f x) ⟩ - deltaM (mono (((fmap functorM f) ∙ (fmap functorM g)) x)) ≡⟨ refl ⟩ + deltaM-fmap (f ∙ g) (deltaM (mono x)) ≡⟨ refl ⟩ + deltaM (delta-fmap (fmap functorM (f ∙ g)) (mono x)) ≡⟨ refl ⟩ + deltaM (mono (fmap functorM (f ∙ g) x)) ≡⟨ cong (\x -> (deltaM (mono x))) (covariant functorM g f x) ⟩ + deltaM (mono (((fmap functorM f) ∙ (fmap functorM g)) x)) ≡⟨ refl ⟩ deltaM-fmap f (deltaM-fmap g (deltaM (mono x))) ∎ deltaM-covariant functorM f g (deltaM (delta x d)) = begin - deltaM-fmap (f ∙ g) (deltaM (delta x d)) + deltaM-fmap (f ∙ g) (deltaM (delta x d)) ≡⟨ refl ⟩ deltaM (delta-fmap (fmap functorM (f ∙ g)) (delta x d)) ≡⟨ refl ⟩ @@ -81,11 +80,11 @@ ∎ -deltaM-is-functor : {l : Level} {n : Rev} +deltaM-is-functor : {l : Level} {n : Nat} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M } {monadM : {l' : Level} -> Monad {l'} M functorM} - -> Functor {l} (\A -> DeltaM M {functorM} {monadM} A n) -deltaM-is-functor {_} {_} {_} {functorM} = record { fmap = deltaM-fmap ; + -> Functor {l} (\A -> DeltaM M {functorM} {monadM} A (S n)) +deltaM-is-functor {_} {_} {_} {functorM} = record { fmap = deltaM-fmap ; preserve-id = deltaM-preserve-id functorM ; covariant = (\f g -> deltaM-covariant functorM g f)}