Mercurial > hg > Members > atton > delta_monad
changeset 108:d47aea3f9246
Delete comment outed temporary code
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Jan 2015 22:26:01 +0900 |
parents | caaf364f45ac |
children | 5bd5f4a7ce8d |
files | agda/delta/monad.agda |
diffstat | 1 files changed, 5 insertions(+), 57 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/delta/monad.agda Wed Jan 28 22:21:27 2015 +0900 +++ b/agda/delta/monad.agda Wed Jan 28 22:26:01 2015 +0900 @@ -11,11 +11,12 @@ module delta.monad where -tailDelta-is-nt : {l : Level} {A B : Set l} {n : Nat} +tailDelta-is-nt : {l : Level} {A B : Set l} {n : Nat} (f : A -> B) -> (d : Delta A (S (S n))) -> (tailDelta {n = n} ∙ (delta-fmap f)) d ≡ ((delta-fmap f) ∙ tailDelta {n = n}) d tailDelta-is-nt f (delta x d) = refl + tailDelta-to-tail-nt : {l : Level} {A B : Set l} (n m : Nat) (f : A -> B) (d : Delta (Delta A (S (S m))) (S n)) -> delta-fmap tailDelta (delta-fmap (delta-fmap f) d) ≡ delta-fmap (delta-fmap f) (delta-fmap tailDelta d) @@ -30,14 +31,13 @@ ∎ tailDelta-to-tail-nt (S n) (S m) f (delta (delta x (delta xx d)) ds) = begin delta (delta (f xx) (delta-fmap f d)) - (delta-fmap tailDelta (delta-fmap (delta-fmap f) ds)) + (delta-fmap tailDelta (delta-fmap (delta-fmap f) ds)) ≡⟨ cong (\de -> delta (delta (f xx) (delta-fmap f d)) de) (tailDelta-to-tail-nt n (S m) f ds) ⟩ delta (delta (f xx) (delta-fmap f d)) (delta-fmap (delta-fmap f) (delta-fmap tailDelta ds)) ∎ - delta-eta-is-nt : {l : Level} {A B : Set l} -> {n : Nat} (f : A -> B) -> (x : A) -> (delta-eta {n = n} ∙ f) x ≡ delta-fmap f (delta-eta x) delta-eta-is-nt {n = O} f x = refl @@ -70,7 +70,7 @@ delta-fmap-mu-to-tail O O (mono (delta d ds)) = refl delta-fmap-mu-to-tail O (S n) (mono (delta (delta x (delta xx d)) (delta (delta dx (delta dxx dd)) ds))) = refl delta-fmap-mu-to-tail (S n) O (delta (delta (delta x (mono xx)) (mono (delta dx (mono dxx)))) ds) = begin - delta (mono dxx) (delta-fmap tailDelta (delta-fmap delta-mu ds)) + delta (mono dxx) (delta-fmap tailDelta (delta-fmap delta-mu ds)) ≡⟨ cong (\de -> delta (mono dxx) de) (delta-fmap-mu-to-tail n O ds) ⟩ delta (mono dxx) (delta-fmap delta-mu @@ -92,7 +92,7 @@ ((delta-mu ∙ (delta-fmap delta-mu)) d) ≡ ((delta-mu ∙ delta-mu) d) monad-law-1 {n = O} (mono d) = refl monad-law-1 {n = S n} (delta (delta (delta x d) dd) ds) = begin - delta x (delta-mu (delta-fmap tailDelta (delta-fmap delta-mu ds))) + delta x (delta-mu (delta-fmap tailDelta (delta-fmap delta-mu ds))) ≡⟨ cong (\de -> delta x (delta-mu de)) (delta-fmap-mu-to-tail n n ds) ⟩ delta x (delta-mu (delta-fmap delta-mu (delta-fmap (delta-fmap tailDelta) (delta-fmap tailDelta ds)))) ≡⟨ cong (\de -> delta x de) (monad-law-1 (delta-fmap (delta-fmap tailDelta) (delta-fmap tailDelta ds))) ⟩ @@ -102,58 +102,6 @@ ∎ -{- - begin - delta x (delta-mu (delta-fmap tailDelta (delta-fmap delta-mu ds))) ≡⟨ {!!} ⟩ - delta x (delta-mu (delta-fmap tailDelta (delta-mu (delta-fmap tailDelta ds)))) - ∎ --} -{- -monad-law-1 {n = S O} (delta (delta (delta _ _) _) (mono (delta (delta _ (mono _)) (mono (delta _ (mono _)))))) = refl -monad-law-1 {n = S n} (delta (delta (delta x d) dd) ds) = begin - (delta-mu ∙ delta-fmap delta-mu) (delta (delta (delta x d) dd) ds) ≡⟨ refl ⟩ - delta-mu (delta-fmap delta-mu (delta (delta (delta x d) dd) ds)) ≡⟨ refl ⟩ - delta-mu (delta (delta-mu (delta (delta x d) dd)) (delta-fmap delta-mu ds)) ≡⟨ refl ⟩ - delta-mu (delta (delta (headDelta (delta x d)) (delta-mu (delta-fmap tailDelta dd))) (delta-fmap delta-mu ds)) ≡⟨ refl ⟩ - delta-mu (delta (delta x (delta-mu (delta-fmap tailDelta dd))) (delta-fmap delta-mu ds)) ≡⟨ refl ⟩ - delta (headDelta (delta x (delta-mu (delta-fmap tailDelta dd)))) (delta-mu (delta-fmap tailDelta (delta-fmap delta-mu ds))) ≡⟨ refl ⟩ - delta x (delta-mu (delta-fmap tailDelta (delta-fmap delta-mu ds))) - ≡⟨ cong (\de -> delta x (delta-mu de)) (sym (functor-law-2 tailDelta delta-mu ds)) ⟩ - delta x (delta-mu (delta-fmap (tailDelta {n = n} ∙ delta-mu {n = (S n)}) ds)) --- ≡⟨ cong (\ff -> delta x (delta-mu (delta-fmap ff ds))) hoge ⟩ - ≡⟨ {!!} ⟩ - delta x (delta-mu (delta-fmap (((delta-mu {n = n}) ∙ (delta-fmap tailDelta)) ∙ tailDelta) ds)) - ≡⟨ cong (\de -> delta x (delta-mu de)) (functor-law-2 (delta-mu ∙ (delta-fmap tailDelta)) tailDelta ds ) ⟩ - delta x (delta-mu (delta-fmap ((delta-mu {n = n}) ∙ (delta-fmap tailDelta)) (delta-fmap tailDelta ds))) - ≡⟨ cong (\de -> delta x (delta-mu de)) (functor-law-2 delta-mu (delta-fmap tailDelta) (delta-fmap tailDelta ds)) ⟩ - delta x (delta-mu (delta-fmap (delta-mu {n = n}) (delta-fmap (delta-fmap tailDelta) (delta-fmap tailDelta ds)))) - ≡⟨ cong (\de -> delta x de) (monad-law-1 (delta-fmap (delta-fmap tailDelta) (delta-fmap tailDelta ds))) ⟩ - delta x (delta-mu (delta-mu (delta-fmap (delta-fmap tailDelta) (delta-fmap tailDelta ds)))) - ≡⟨ cong (\de -> delta x (delta-mu de)) (delta-mu-is-nt tailDelta (delta-fmap tailDelta ds)) ⟩ - delta x (delta-mu (delta-fmap tailDelta (delta-mu (delta-fmap tailDelta ds)))) ≡⟨ refl ⟩ - delta (headDelta (delta x d)) (delta-mu (delta-fmap tailDelta (delta-mu (delta-fmap tailDelta ds)))) ≡⟨ refl ⟩ - delta-mu (delta (delta x d) (delta-mu (delta-fmap tailDelta ds))) ≡⟨ refl ⟩ - delta-mu (delta (headDelta (delta (delta x d) dd)) (delta-mu (delta-fmap tailDelta ds))) ≡⟨ refl ⟩ - delta-mu (delta-mu (delta (delta (delta x d) dd) ds)) ≡⟨ refl ⟩ - (delta-mu ∙ delta-mu) (delta (delta (delta x d) dd) ds) - ∎ --} -{- -begin - (delta-mu ∙ delta-fmap delta-mu) (delta d ds) ≡⟨ refl ⟩ - delta-mu (delta-fmap delta-mu (delta d ds)) ≡⟨ refl ⟩ - delta-mu (delta (delta-mu d) (delta-fmap delta-mu ds)) ≡⟨ refl ⟩ - delta (headDelta (delta-mu d)) (delta-mu (delta-fmap tailDelta (delta-fmap delta-mu ds))) ≡⟨ {!!} ⟩ - delta (headDelta (headDelta d)) (delta-mu (delta-fmap tailDelta (delta-mu (delta-fmap tailDelta ds)))) ≡⟨ refl ⟩ - delta-mu (delta (headDelta d) (delta-mu (delta-fmap tailDelta ds))) ≡⟨ refl ⟩ - delta-mu (delta-mu (delta d ds)) ≡⟨ refl ⟩ - (delta-mu ∙ delta-mu) (delta d ds) - ∎ --} - - - - delta-right-unity-law : {l : Level} {A : Set l} {n : Nat} (d : Delta A (S n)) -> (delta-mu ∙ delta-eta) d ≡ id d delta-right-unity-law (mono x) = refl delta-right-unity-law (delta x d) = begin