Mercurial > hg > Members > atton > delta_monad
view agda/delta.agda @ 43:90b171e3a73e
Rename to Delta from Similar
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Nov 2014 15:19:04 +0900 |
parents | agda/similar.agda@1df4f9d88025 |
children | 9bb7c9bee94f |
line wrap: on
line source
open import list open import basic open import Level open import Relation.Binary.PropositionalEquality open ≡-Reasoning module delta where data Delta {l : Level} (A : Set l) : (Set (suc l)) where similar : List String -> A -> List String -> A -> Delta A -- Functor fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B) fmap f (similar xs x ys y) = similar xs (f x) ys (f y) -- Monad (Category) mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y eta : {l : Level} {A : Set l} -> A -> Delta A eta x = similar [] x [] x returnS : {l : Level} {A : Set l} -> A -> Delta A returnS x = similar [[ (show x) ]] x [[ (show x) ]] x returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y -- Monad (Haskell) return : {l : Level} {A : Set l} -> A -> Delta A return = eta _>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B) x >>= f = mu (fmap f x) -- proofs -- Functor-laws -- Functor-law-1 : T(id) = id' functor-law-1 : {l : Level} {A : Set l} -> (s : Delta A) -> (fmap id) s ≡ id s functor-law-1 (similar lx x ly y) = refl -- Functor-law-2 : T(f . g) = T(f) . T(g) functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (f : B -> C) -> (g : A -> B) -> (s : Delta A) -> (fmap (f ∙ g)) s ≡ ((fmap f) ∙ (fmap g)) s functor-law-2 f g (similar lx x ly y) = refl -- Monad-laws (Category) -- monad-law-1 : join . fmap join = join . join monad-law-1 : {l : Level} {A : Set l} -> (s : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s) monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _)) ly (similar _ (similar _ _ _ _) lly (similar _ _ llly y))) = begin similar (lx ++ (llx ++ lllx)) x (ly ++ (lly ++ llly)) y ≡⟨ cong (\left-list -> similar left-list x (ly ++ (lly ++ llly)) y) (list-associative lx llx lllx) ⟩ similar (lx ++ llx ++ lllx) x (ly ++ (lly ++ llly)) y ≡⟨ cong (\right-list -> similar (lx ++ llx ++ lllx) x right-list y ) (list-associative ly lly llly) ⟩ similar (lx ++ llx ++ lllx) x (ly ++ lly ++ llly) y ∎ -- monad-law-2 : join . fmap return = join . return = id -- monad-law-2-1 join . fmap return = join . return monad-law-2-1 : {l : Level} {A : Set l} -> (s : Delta A) -> (mu ∙ fmap eta) s ≡ (mu ∙ eta) s monad-law-2-1 (similar lx x ly y) = begin similar (lx ++ []) x (ly ++ []) y ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩ similar lx x (ly ++ []) y ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩ similar lx x ly y ∎ -- monad-law-2-2 : join . return = id monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s monad-law-2-2 (similar lx x ly y) = refl -- monad-law-3 : return . f = fmap f . return monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x monad-law-3 f x = refl -- monad-law-4 : join . fmap (fmap f) = fmap f . join monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Delta (Delta A)) -> (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl -- Monad-laws (Haskell) -- monad-law-h-1 : return a >>= k = k a monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} -> (a : A) -> (k : A -> (Delta B)) -> (return a >>= k) ≡ (k a) monad-law-h-1 a k = begin return a >>= k ≡⟨ refl ⟩ mu (fmap k (return a)) ≡⟨ refl ⟩ mu (return (k a)) ≡⟨ refl ⟩ (mu ∙ return) (k a) ≡⟨ refl ⟩ (mu ∙ eta) (k a) ≡⟨ (monad-law-2-2 (k a)) ⟩ id (k a) ≡⟨ refl ⟩ k a ∎ -- monad-law-h-2 : m >>= return = m monad-law-h-2 : {l : Level}{A : Set l} -> (m : Delta A) -> (m >>= return) ≡ m monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y) -- monad-law-h-3 : m >>= (\x -> k x >>= h) = (m >>= k) >>= h monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (m : Delta A) -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) -> (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h) monad-law-h-3 (similar lx x ly y) k h = begin ((similar lx x ly y) >>= (\x -> (k x) >>= h)) ≡⟨ refl ⟩ mu (fmap (\x -> k x >>= h) (similar lx x ly y)) ≡⟨ refl ⟩ (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y) ≡⟨ refl ⟩ (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y) ≡⟨ refl ⟩ (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y) ≡⟨ refl ⟩ (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) ≡⟨ refl ⟩ (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩ (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) ≡⟨ refl ⟩ (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) ≡⟨ refl ⟩ (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y) ≡⟨ refl ⟩ (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y) ≡⟨ refl ⟩ (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y)) ≡⟨ refl ⟩ mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y))) ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩ mu (fmap h (mu (similar lx (k x) ly (k y)))) ≡⟨ refl ⟩ (mu ∙ fmap h) (mu (fmap k (similar lx x ly y))) ≡⟨ refl ⟩ mu (fmap h (mu (fmap k (similar lx x ly y)))) ≡⟨ refl ⟩ (mu (fmap k (similar lx x ly y))) >>= h ≡⟨ refl ⟩ ((similar lx x ly y) >>= k) >>= h ∎