Mercurial > hg > Members > atton > delta_monad
changeset 33:0bc402f970b3
Proof Monad-law 1
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Oct 2014 14:04:33 +0900 |
parents | 71906644d206 |
children | b7c4e6276bcf |
files | agda/similar.agda |
diffstat | 1 files changed, 4 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/similar.agda Sat Oct 18 13:52:18 2014 +0900 +++ b/agda/similar.agda Sat Oct 18 14:04:33 2014 +0900 @@ -25,14 +25,15 @@ returnSS : {A : Set} -> A -> A -> Similar A returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y + --monad-law-1 : mu ∙ (fmap mu) ≡ mu ∙ mu - - monad-law-1 : {l : Level} {A : Set l} -> (s : Similar (Similar (Similar A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s) monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _)) ly (similar _ (similar _ _ _ _) lly (similar _ _ llly y))) = begin similar (lx ++ (llx ++ lllx)) x (ly ++ (lly ++ llly)) y - ≡⟨ {!!} ⟩ + ≡⟨ cong (\left-list -> similar left-list x (ly ++ (lly ++ llly)) y) (list-associative lx llx lllx) ⟩ + similar (lx ++ llx ++ lllx) x (ly ++ (lly ++ llly)) y + ≡⟨ cong (\right-list -> similar (lx ++ llx ++ lllx) x right-list y ) (list-associative ly lly llly) ⟩ similar (lx ++ llx ++ lllx) x (ly ++ lly ++ llly) y ∎