Mercurial > hg > Members > atton > delta_monad
changeset 70:18a20a14c4b2
Change prove method. use Int ...
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Nov 2014 22:44:57 +0900 |
parents | 295e8ed39c0c |
children | 56da62d57c95 |
files | agda/delta.agda |
diffstat | 1 files changed, 154 insertions(+), 55 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/delta.agda Thu Nov 27 19:12:44 2014 +0900 +++ b/agda/delta.agda Thu Nov 27 22:44:57 2014 +0900 @@ -16,9 +16,9 @@ deltaAppend (mono x) d = delta x d deltaAppend (delta x d) ds = delta x (deltaAppend d ds) -headDelta : {l : Level} {A : Set l} -> Delta A -> Delta A -headDelta (mono x) = mono x -headDelta (delta x _) = mono x +headDelta : {l : Level} {A : Set l} -> Delta A -> A +headDelta (mono x) = x +headDelta (delta x _) = x tailDelta : {l : Level} {A : Set l} -> Delta A -> Delta A tailDelta (mono x) = mono x @@ -38,12 +38,11 @@ bind : {l ll : Level} {A : Set l} {B : Set ll} -> (Delta A) -> (A -> Delta B) -> Delta B bind (mono x) f = f x -bind (delta x d) f = deltaAppend (headDelta (f x)) (bind d (tailDelta ∙ f)) +bind (delta x d) f = delta (headDelta (f x)) (bind d (tailDelta ∙ f)) mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A mu d = bind d id - returnS : {l : Level} {A : Set l} -> A -> Delta A returnS x = mono x @@ -58,39 +57,12 @@ _>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B) (mono x) >>= f = f x -(delta x d) >>= f = deltaAppend (headDelta (f x)) (d >>= (tailDelta ∙ f)) +(delta x d) >>= f = delta (headDelta (f x)) (d >>= (tailDelta ∙ f)) -- proofs --- sub proofs - -head-delta-natural-transformation : {l ll : Level} {A : Set l} {B : Set ll} -> - (f : A -> B) (d : Delta A) -> (headDelta (fmap f d)) ≡ fmap f (headDelta d) -head-delta-natural-transformation f (mono x) = refl -head-delta-natural-transformation f (delta x d) = refl - -tail-delta-natural-transfomation : {l ll : Level} {A : Set l} {B : Set ll} -> - (f : A -> B) (d : Delta A) -> (tailDelta (fmap f d)) ≡ fmap f (tailDelta d) -tail-delta-natural-transfomation f (mono x) = refl -tail-delta-natural-transfomation f (delta x d) = refl - -delta-append-natural-transfomation : {l ll : Level} {A : Set l} {B : Set ll} -> - (f : A -> B) (d : Delta A) (dd : Delta A) -> - deltaAppend (fmap f d) (fmap f dd) ≡ fmap f (deltaAppend d dd) -delta-append-natural-transfomation f (mono x) dd = refl -delta-append-natural-transfomation f (delta x d) dd = begin - deltaAppend (fmap f (delta x d)) (fmap f dd) - ≡⟨ refl ⟩ - deltaAppend (delta (f x) (fmap f d)) (fmap f dd) - ≡⟨ refl ⟩ - delta (f x) (deltaAppend (fmap f d) (fmap f dd)) - ≡⟨ cong (\d -> delta (f x) d) (delta-append-natural-transfomation f d dd) ⟩ - delta (f x) (fmap f (deltaAppend d dd)) - ≡⟨ refl ⟩ - fmap f (deltaAppend (delta x d) dd) - ∎ -- Functor-laws -- Functor-law-1 : T(id) = id' @@ -105,27 +77,166 @@ functor-law-2 f g (mono x) = refl functor-law-2 f g (delta x d) = cong (delta (f (g x))) (functor-law-2 f g d) -{- + -- Monad-laws (Category) + +data Int : Set where + one : Int + succ : Int -> Int + +n-times-tail-delta : {l : Level} {A : Set l} -> Int -> ((Delta A) -> (Delta A)) +n-times-tail-delta one = tailDelta +n-times-tail-delta (succ n) = (n-times-tail-delta n) ∙ tailDelta + +tail-delta-to-mono : {l : Level} {A : Set l} -> (n : Int) -> (x : A) -> + (n-times-tail-delta n) (mono x) ≡ (mono x) +tail-delta-to-mono one x = refl +tail-delta-to-mono (succ n) x = begin + n-times-tail-delta (succ n) (mono x) + ≡⟨ refl ⟩ + n-times-tail-delta n (mono x) + ≡⟨ tail-delta-to-mono n x ⟩ + mono x + ∎ + +monad-law-1-4 : {l : Level} {A : Set l} -> (n : Int) (d : Delta (Delta A)) -> + (headDelta ((n-times-tail-delta n) (headDelta ((n-times-tail-delta n) d)))) ≡ + (headDelta ((n-times-tail-delta n) (mu d))) +monad-law-1-4 one (mono d) = refl +monad-law-1-4 one (delta d (mono ds)) = refl +monad-law-1-4 one (delta d (delta ds ds₁)) = refl +monad-law-1-4 (succ n) (mono d) = begin + headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta (succ n) (mono d)))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (headDelta ((n-times-tail-delta n) (mono d)))) + ≡⟨ cong (\d -> headDelta (n-times-tail-delta (succ n) (headDelta d))) (tail-delta-to-mono n d) ⟩ + headDelta (n-times-tail-delta (succ n) (headDelta (mono d))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) d) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (mu (mono d))) + ∎ +monad-law-1-4 (succ n) (delta d (mono ds)) = begin + headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta (succ n) (delta d (mono ds))))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta n (mono ds)))) + ≡⟨ cong (\d -> headDelta (n-times-tail-delta (succ n) (headDelta d))) (tail-delta-to-mono n ds) ⟩ + headDelta (n-times-tail-delta (succ n) (headDelta (mono ds))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) ds) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta n (tailDelta ds)) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta n ((bind (mono ds) tailDelta))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (delta (headDelta d) (bind (mono ds) tailDelta))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (mu (delta d (mono ds)))) + ∎ +monad-law-1-4 (succ n) (delta d (delta dd ds)) = begin + headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta (succ n) (delta d (delta dd ds))))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta n (delta dd ds)))) + ≡⟨ {!!} ⟩ -- ? + + headDelta (n-times-tail-delta n (delta (headDelta (tailDelta dd)) (bind ds (tailDelta ∙ tailDelta)))) + ≡⟨ {!!} ⟩ + headDelta (n-times-tail-delta n (delta (headDelta (tailDelta dd)) (bind ds (tailDelta ∙ tailDelta )))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta n (bind (delta dd ds) (tailDelta))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (delta (headDelta d) (bind (delta dd ds) (tailDelta)))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (mu (delta d (delta dd ds)))) + ∎ + + + + +monad-law-1-3 : {l : Level} {A : Set l} -> (i : Int) -> (d : Delta (Delta (Delta A))) -> + (bind (fmap mu d) (n-times-tail-delta i) ≡ (bind (bind d (n-times-tail-delta i)) (n-times-tail-delta i))) +monad-law-1-3 one (mono (mono d)) = refl +monad-law-1-3 one (mono (delta d d₁)) = refl +monad-law-1-3 one (delta d ds) = begin + bind (fmap mu (delta d ds)) (n-times-tail-delta one) + ≡⟨ refl ⟩ + bind (delta (mu d) (fmap mu ds)) (n-times-tail-delta one) + ≡⟨ refl ⟩ + delta (headDelta ((n-times-tail-delta one) (mu d))) (bind (fmap mu ds) ((n-times-tail-delta one) ∙ tailDelta)) + ≡⟨ refl ⟩ + delta (headDelta ((n-times-tail-delta one) (mu d))) (bind (fmap mu ds) (n-times-tail-delta (succ one))) + ≡⟨ cong (\dx -> delta (headDelta ((n-times-tail-delta one) (mu d))) dx) (monad-law-1-3 (succ one) ds) ⟩ + delta (headDelta ((n-times-tail-delta one) (mu d))) (bind (bind ds (n-times-tail-delta (succ one))) (n-times-tail-delta (succ one))) + ≡⟨ cong (\dx -> delta dx (bind (bind ds (n-times-tail-delta (succ one))) (n-times-tail-delta (succ one )))) (sym (monad-law-1-4 one d)) ⟩ + delta (headDelta ((n-times-tail-delta one) (headDelta ((n-times-tail-delta one) d)))) (bind (bind ds (n-times-tail-delta (succ one))) (n-times-tail-delta (succ one))) + ≡⟨ refl ⟩ + delta (headDelta ((n-times-tail-delta one) (headDelta ((n-times-tail-delta one) d)))) ((bind (bind ds (n-times-tail-delta (succ one)))) ((n-times-tail-delta one) ∙ tailDelta)) + ≡⟨ refl ⟩ + bind (delta (headDelta ((n-times-tail-delta one) d)) (bind ds (n-times-tail-delta (succ one)))) (n-times-tail-delta one) + ≡⟨ refl ⟩ + bind (delta (headDelta ((n-times-tail-delta one) d)) (bind ds ((n-times-tail-delta one) ∙ tailDelta))) (n-times-tail-delta one) + ≡⟨ refl ⟩ + bind (bind (delta d ds) (n-times-tail-delta one)) (n-times-tail-delta one) + ∎ +monad-law-1-3 (succ i) d = {!!} + + +monad-law-1-2 : {l : Level} {A : Set l} -> (d : Delta (Delta A)) -> headDelta (mu d) ≡ (headDelta (headDelta d)) +monad-law-1-2 (mono _) = refl +monad-law-1-2 (delta _ _) = refl + -- monad-law-1 : join . fmap join = join . join monad-law-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) d) ≡ ((mu ∙ mu) d) -monad-law-1 d = ? +monad-law-1 (mono d) = refl +monad-law-1 (delta x d) = begin + (mu ∙ fmap mu) (delta x d) + ≡⟨ refl ⟩ + mu (fmap mu (delta x d)) + ≡⟨ refl ⟩ + mu (delta (mu x) (fmap mu d)) + ≡⟨ refl ⟩ + delta (headDelta (mu x)) (bind (fmap mu d) tailDelta) + ≡⟨ cong (\x -> delta x (bind (fmap mu d) tailDelta)) (monad-law-1-2 x) ⟩ + delta (headDelta (headDelta x)) (bind (fmap mu d) tailDelta) + ≡⟨ cong (\d -> delta (headDelta (headDelta x)) d) (monad-law-1-3 one d) ⟩ + delta (headDelta (headDelta x)) (bind (bind d tailDelta) tailDelta) + ≡⟨ refl ⟩ + mu (delta (headDelta x) (bind d tailDelta)) + ≡⟨ refl ⟩ + mu (mu (delta x d)) + ≡⟨ refl ⟩ + (mu ∙ mu) (delta x d) + ∎ + + + +{- +-- monad-law-2 : join . fmap return = join . return = id +-- monad-law-2-1 join . fmap return = join . return +monad-law-2-1 : {l : Level} {A : Set l} -> (d : Delta A) -> + (mu ∙ fmap eta) d ≡ (mu ∙ eta) d +monad-law-2-1 (mono x) = refl +monad-law-2-1 (delta x d) = {!!} -- monad-law-2-2 : join . return = id -monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s -monad-law-2-2 (similar lx x ly y) = refl +monad-law-2-2 : {l : Level} {A : Set l } -> (d : Delta A) -> (mu ∙ eta) d ≡ id d +monad-law-2-2 d = refl + -- monad-law-3 : return . f = fmap f . return monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x monad-law-3 f x = refl + -- monad-law-4 : join . fmap (fmap f) = fmap f . join -monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Delta (Delta A)) -> - (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s -monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl --} +monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (d : Delta (Delta A)) -> + (mu ∙ fmap (fmap f)) d ≡ (fmap f ∙ mu) d +monad-law-4 f d = {!!} + + + -- Monad-laws (Haskell) -- monad-law-h-1 : return a >>= k = k a @@ -147,18 +258,6 @@ (m : Delta A) -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) -> (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h) monad-law-h-3 (mono x) k h = refl -monad-law-h-3 (delta x (mono xx)) k h = begin - delta x (mono xx) >>= (\x → k x >>= h) - ≡⟨ refl ⟩ - deltaAppend (headDelta ((\x -> k x >>= h) x)) ((mono xx) >>= (tailDelta ∙ ((\x → k x >>= h)))) - ≡⟨ refl ⟩ - deltaAppend (headDelta ((\x -> k x >>= h) x)) ((tailDelta ∙ (\x → k x >>= h)) xx) - ≡⟨ refl ⟩ - deltaAppend (headDelta (k x >>= h)) (tailDelta (k xx >>= h)) - ≡⟨ {!!} ⟩ -- ? - deltaAppend (headDelta (k x)) (tailDelta (k xx)) >>= h - ≡⟨ refl ⟩ - (delta x (mono xx) >>= k) >>= h - ∎ -monad-law-h-3 (delta x (delta xx d)) k h = {!!} +monad-law-h-3 (delta x d) k h = {!!} +-} \ No newline at end of file