Mercurial > hg > Members > atton > delta_monad
changeset 71:56da62d57c95
Change prove method. use Int ...
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Nov 2014 23:16:55 +0900 |
parents | 18a20a14c4b2 |
children | e95f15af3f8b |
files | agda/delta.agda |
diffstat | 1 files changed, 83 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/delta.agda Thu Nov 27 22:44:57 2014 +0900 +++ b/agda/delta.agda Thu Nov 27 23:16:55 2014 +0900 @@ -100,6 +100,54 @@ mono x ∎ +monad-law-1-6 : {l : Level} {A : Set l} -> (n : Int) -> (ds : Delta (Delta A)) -> + headDelta (n-times-tail-delta (succ (succ n)) (headDelta (n-times-tail-delta n ds))) + ≡ + headDelta (n-times-tail-delta n (bind ds (tailDelta ∙ tailDelta))) +monad-law-1-6 one (mono ds) = refl +monad-law-1-6 one (delta ds (mono ds₁)) = refl +monad-law-1-6 one (delta ds (delta ds₁ ds₂)) = refl +monad-law-1-6 (succ n) (mono (mono x)) = begin + headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta (n-times-tail-delta (succ n) (mono (mono x))))) + ≡⟨ cong (\d -> headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta d))) (tail-delta-to-mono (succ n) (mono x)) ⟩ + headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta (mono (mono x)))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (bind (mono (mono x)) (tailDelta ∙ tailDelta))) + ∎ +monad-law-1-6 (succ n) (mono (delta x ds)) = begin + headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta (n-times-tail-delta (succ n) (mono (delta x ds))))) + ≡⟨ cong (\d -> headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta d))) (tail-delta-to-mono (succ n) (delta x ds)) ⟩ + headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta (mono (delta x ds)))) + ≡⟨ refl ⟩ + headDelta(n-times-tail-delta (succ n) (bind (mono (delta x ds)) (tailDelta ∙ tailDelta))) + ∎ +monad-law-1-6 (succ n) (delta d (mono ds)) = begin + headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta (n-times-tail-delta (succ n) (delta d (mono ds))))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta (n-times-tail-delta n (mono ds)))) + ≡⟨ cong (\d -> headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta d))) (tail-delta-to-mono n ds) ⟩ + headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta (mono ds))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (bind (delta d (mono ds)) (tailDelta ∙ tailDelta))) + ∎ +monad-law-1-6 (succ n) (delta d (delta dd ds)) = begin + headDelta (n-times-tail-delta (succ (succ (succ n))) (headDelta (n-times-tail-delta (succ n) (delta d (delta dd ds))))) + ≡⟨ {!!} ⟩ + headDelta (n-times-tail-delta (succ n) (bind (delta d (delta dd ds)) (tailDelta ∙ tailDelta))) + ∎ +{- + headDelta (n-times-tail-delta (succ (succ n)) (headDelta (n-times-tail-delta n ds))) + ≡ + headDelta (n-times-tail-delta n (bind ds (tailDelta ∙ tailDelta))) +-} + +monad-law-1-5 : {l : Level} {A : Set l} -> (ds : Delta (Delta A)) -> + headDelta (n-times-tail-delta (succ one) (headDelta ds)) + ≡ + headDelta (bind ds (tailDelta ∙ tailDelta)) +monad-law-1-5 (mono ds) = refl +monad-law-1-5 (delta ds ds₁) = refl + monad-law-1-4 : {l : Level} {A : Set l} -> (n : Int) (d : Delta (Delta A)) -> (headDelta ((n-times-tail-delta n) (headDelta ((n-times-tail-delta n) d)))) ≡ (headDelta ((n-times-tail-delta n) (mu d))) @@ -134,7 +182,40 @@ ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (mu (delta d (mono ds)))) ∎ -monad-law-1-4 (succ n) (delta d (delta dd ds)) = begin +monad-law-1-4 (succ one) (delta d (delta dd ds)) = begin + headDelta (n-times-tail-delta (succ one) (headDelta (n-times-tail-delta (succ one) (delta d (delta dd ds))))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ one) (headDelta (n-times-tail-delta one (delta dd ds)))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ one) (headDelta ds)) + ≡⟨ monad-law-1-5 ds ⟩ + headDelta (bind ds (tailDelta ∙ tailDelta)) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta one (delta (headDelta (tailDelta dd)) (bind ds (tailDelta ∙ tailDelta )))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta one (bind (delta dd ds) (tailDelta))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ one) (delta (headDelta d) (bind (delta dd ds) (tailDelta)))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ one) (mu (delta d (delta dd ds)))) + ∎ +monad-law-1-4 (succ (succ n)) (delta d (delta dd ds)) = begin + headDelta (n-times-tail-delta (succ (succ n)) (headDelta (n-times-tail-delta (succ (succ n)) (delta d (delta dd ds))))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ (succ n)) (headDelta (n-times-tail-delta n ds))) + ≡⟨ monad-law-1-6 n ds ⟩ + headDelta (n-times-tail-delta n (bind ds (tailDelta ∙ tailDelta))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (delta (headDelta dd) (bind ds (tailDelta ∙ tailDelta)))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ n) (bind (delta dd ds) tailDelta)) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ (succ n)) (delta (headDelta d) (bind (delta dd ds) tailDelta))) + ≡⟨ refl ⟩ + headDelta (n-times-tail-delta (succ (succ n)) (mu (delta d (delta dd ds)))) + ∎ + +{-begin headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta (succ n) (delta d (delta dd ds))))) ≡⟨ refl ⟩ headDelta (n-times-tail-delta (succ n) (headDelta (n-times-tail-delta n (delta dd ds)))) @@ -151,7 +232,7 @@ headDelta (n-times-tail-delta (succ n) (mu (delta d (delta dd ds)))) ∎ - +-} monad-law-1-3 : {l : Level} {A : Set l} -> (i : Int) -> (d : Delta (Delta (Delta A))) ->