Mercurial > hg > Members > atton > delta_monad
changeset 42:1df4f9d88025
Proof Monad-law-3 (haskell)
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 24 Oct 2014 14:08:50 +0900 |
parents | 23474bf242c6 |
children | 90b171e3a73e |
files | agda/similar.agda |
diffstat | 1 files changed, 17 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/similar.agda Sun Oct 19 17:41:51 2014 +0900 +++ b/agda/similar.agda Fri Oct 24 14:08:50 2014 +0900 @@ -93,7 +93,7 @@ monad-law-3 f x = refl -- monad-law-4 : join . fmap (fmap f) = fmap f . join -monad-law-4 : {l : Level} {A B : Set l} (f : A -> B) (s : Similar (Similar A)) -> +monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Similar (Similar A)) -> (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl @@ -123,7 +123,6 @@ monad-law-h-2 : {l : Level}{A : Set l} -> (m : Similar A) -> (m >>= return) ≡ m monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y) - -- monad-law-h-3 : m >>= (\x -> k x >>= h) = (m >>= k) >>= h monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (m : Similar A) -> (k : A -> (Similar B)) -> (h : B -> (Similar C)) -> @@ -141,9 +140,22 @@ ≡⟨ refl ⟩ (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) ≡⟨ refl ⟩ - --(mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) - {!!} - ≡⟨ {!!} ⟩ + (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) + ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩ + (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) + ≡⟨ refl ⟩ + (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y) + ≡⟨ refl ⟩ + (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y)) + ≡⟨ refl ⟩ + mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y))) + ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩ + mu (fmap h (mu (similar lx (k x) ly (k y)))) + ≡⟨ refl ⟩ (mu ∙ fmap h) (mu (fmap k (similar lx x ly y))) ≡⟨ refl ⟩ mu (fmap h (mu (fmap k (similar lx x ly y))))