changeset 113:47f144540d51

Delte trying code
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Fri, 30 Jan 2015 21:59:06 +0900
parents 0a3b6cb91a05
children 08403eb8db8b
files agda/delta/functor.agda agda/deltaM/functor.agda agda/laws.agda
diffstat 3 files changed, 4 insertions(+), 32 deletions(-) [+]
line wrap: on
line diff
--- a/agda/delta/functor.agda	Fri Jan 30 21:57:31 2015 +0900
+++ b/agda/delta/functor.agda	Fri Jan 30 21:59:06 2015 +0900
@@ -23,21 +23,10 @@
 functor-law-2 f g (mono x)    = refl
 functor-law-2 f g (delta x d) = cong (delta (f (g x))) (functor-law-2 f g d)
 
-delta-fmap-equiv : {l : Level} {A B : Set l} {n : Nat} 
-                   {f g : A -> B} ->  (eq : (x : A) -> f x ≡ g x) (d : Delta A (S n)) ->
-                 delta-fmap f d ≡ delta-fmap g d
-delta-fmap-equiv {f = f} {g = g} eq (mono x) = begin
-  mono (f x) ≡⟨ cong (\he -> (mono he)) (eq x) ⟩
-  mono (g x) ∎
-delta-fmap-equiv {f = f} {g = g} eq (delta x d) = begin
-  delta (f x) (delta-fmap f d) ≡⟨ cong (\hx -> (delta hx (delta-fmap f d))) (eq x) ⟩
-  delta (g x) (delta-fmap f d) ≡⟨ cong (\fx -> (delta (g x) fx)) (delta-fmap-equiv {f = f} {g = g} eq d) ⟩
-  delta (g x) (delta-fmap g d)   ∎
-
 
 
 delta-is-functor : {l : Level} {n : Nat} -> Functor {l} (\A -> Delta A (S n))
 delta-is-functor = record {  fmap = delta-fmap ;
                              preserve-id = functor-law-1;
-                             covariant  = \f g -> functor-law-2 g f;
-                             fmap-equiv = delta-fmap-equiv }
+                             covariant  = \f g -> functor-law-2 g f
+                             }
--- a/agda/deltaM/functor.agda	Fri Jan 30 21:57:31 2015 +0900
+++ b/agda/deltaM/functor.agda	Fri Jan 30 21:59:06 2015 +0900
@@ -79,21 +79,7 @@
   (deltaM-fmap f ∙ deltaM-fmap g) (deltaM (delta x d))

 
-postulate deltaM-fmap-equiv : {l : Level} {A B : Set l} {n : Nat}
-                                {M : Set l -> Set l}
-                                {functorM : Functor M}
-                                {monadM   : Monad M functorM}
-                                {f g : A -> B}
-                                (eq : (x : A) -> f x ≡ g x)
-                                (d : DeltaM M {functorM} {monadM} A (S n)) ->
-                                deltaM-fmap f d ≡ deltaM-fmap g d
-{-
-deltaM-fmap-equiv {n = O} f g eq (deltaM (mono x)) = begin
-  {!!} ≡⟨ {!!} ⟩
-  {!!}
-  ∎
-deltaM-fmap-equiv {n = S n} f g eq d = {!!}
--}
+
 
 deltaM-is-functor : {l : Level} {n : Nat}
                                 {M : Set l -> Set l}
@@ -102,6 +88,5 @@
                     -> Functor {l} (\A -> DeltaM M {functorM} {monadM} A (S n))
 deltaM-is-functor {_} {_} {_} {functorM} = record { fmap         = deltaM-fmap ;
                                                     preserve-id  = deltaM-preserve-id functorM ;
-                                                    covariant    = (\f g -> deltaM-covariant functorM g f);
-                                                    fmap-equiv   = deltaM-fmap-equiv
+                                                    covariant    = (\f g -> deltaM-covariant functorM g f)
                                                     }
--- a/agda/laws.agda	Fri Jan 30 21:57:31 2015 +0900
+++ b/agda/laws.agda	Fri Jan 30 21:59:06 2015 +0900
@@ -11,8 +11,6 @@
     preserve-id : {A : Set l} (x : F A) → fmap id x ≡ id x
     covariant   : {A B C : Set l} (f : A -> B) -> (g : B -> C) -> (x : F A)
                     -> fmap (g ∙ f) x ≡ ((fmap g) ∙ (fmap f)) x
-  field 
-    fmap-equiv : {A B : Set l} {f g : A -> B} -> ((x : A) -> f x ≡ g x) -> (x : F A) -> fmap f x ≡ fmap g x
 open Functor
 
 record NaturalTransformation {l : Level} (F G : {l' : Level} -> Set l' -> Set l')