Mercurial > hg > Members > atton > delta_monad
changeset 65:6d0193011f89
Trying prove monad-law-1 by another pattern
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 26 Nov 2014 17:11:33 +0900 |
parents | 15eec529dfc4 |
children | 472b4cbb3dcf |
files | agda/delta.agda |
diffstat | 1 files changed, 76 insertions(+), 297 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/delta.agda Wed Nov 26 16:17:53 2014 +0900 +++ b/agda/delta.agda Wed Nov 26 17:11:33 2014 +0900 @@ -41,7 +41,7 @@ bind (delta x d) f = deltaAppend (headDelta (f x)) (bind d (tailDelta ∙ f)) mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A -mu d = bind d id +mu d = bind d id returnS : {l : Level} {A : Set l} -> A -> Delta A @@ -66,24 +66,24 @@ -- sub proofs -head-delta-natural-transformation : {l ll : Level} {A : Set l} {B : Set ll} -> +head-delta-natural-transformation : {l ll : Level} {A : Set l} {B : Set ll} -> (f : A -> B) (d : Delta A) -> (headDelta (fmap f d)) ≡ fmap f (headDelta d) head-delta-natural-transformation f (mono x) = refl head-delta-natural-transformation f (delta x d) = refl -tail-delta-natural-transfomation : {l ll : Level} {A : Set l} {B : Set ll} -> +tail-delta-natural-transfomation : {l ll : Level} {A : Set l} {B : Set ll} -> (f : A -> B) (d : Delta A) -> (tailDelta (fmap f d)) ≡ fmap f (tailDelta d) tail-delta-natural-transfomation f (mono x) = refl tail-delta-natural-transfomation f (delta x d) = refl -delta-append-natural-transfomation : {l ll : Level} {A : Set l} {B : Set ll} -> - (f : A -> B) (d : Delta A) (dd : Delta A) -> +delta-append-natural-transfomation : {l ll : Level} {A : Set l} {B : Set ll} -> + (f : A -> B) (d : Delta A) (dd : Delta A) -> deltaAppend (fmap f d) (fmap f dd) ≡ fmap f (deltaAppend d dd) delta-append-natural-transfomation f (mono x) dd = refl delta-append-natural-transfomation f (delta x d) dd = begin - deltaAppend (fmap f (delta x d)) (fmap f dd) + deltaAppend (fmap f (delta x d)) (fmap f dd) ≡⟨ refl ⟩ - deltaAppend (delta (f x) (fmap f d)) (fmap f dd) + deltaAppend (delta (f x) (fmap f d)) (fmap f dd) ≡⟨ refl ⟩ delta (f x) (deltaAppend (fmap f d) (fmap f dd)) ≡⟨ cong (\d -> delta (f x) d) (delta-append-natural-transfomation f d dd) ⟩ @@ -91,36 +91,6 @@ ≡⟨ refl ⟩ fmap f (deltaAppend (delta x d) dd) ∎ -{- - -mu-head-delta : {l : Level} {A : Set l} -> (d : Delta (Delta A)) -> mu (headDelta d) ≡ headDelta (mu d) -mu-head-delta (mono (mono x)) = refl -mu-head-delta (mono (delta x (mono xx))) = begin - mu (headDelta (mono (delta x (mono xx)))) - ≡⟨ refl ⟩ - bind (headDelta (mono (delta x (mono xx)))) id - ≡⟨ refl ⟩ - bind (delta x (mono xx)) return - ≡⟨ refl ⟩ - deltaAppend (headDelta (return x)) (bind (mono xx) (tailDelta ∙ return)) - ≡⟨ refl ⟩ - deltaAppend (headDelta (return x)) ((tailDelta ∙ return) xx) - ≡⟨ refl ⟩ - deltaAppend (headDelta (mono x)) (tailDelta (mono xx)) - ≡⟨ refl ⟩ - deltaAppend (mono x) (mono xx) - ≡⟨ refl ⟩ - delta x (mono xx) - ≡⟨ {!!} ⟩ - headDelta (delta x (mono xx)) - ≡⟨ refl ⟩ - headDelta (bind (mono (delta x (mono xx))) id) - ≡⟨ refl ⟩ - headDelta (mu (mono (delta x (mono xx)))) - ∎ -mu-head-delta (mono (delta x (delta x₁ d))) = {!!} -mu-head-delta (delta d dd) = {!!} --} -- Functor-laws -- Functor-law-1 : T(id) = id' @@ -137,293 +107,102 @@ -- Monad-laws (Category) -monad-law-1-5 : {l : Level} {A : Set l} -> (ds : Delta (Delta A)) -> - (tailDelta ∙ tailDelta) (bind ds tailDelta) - ≡ - bind ((tailDelta ∙ tailDelta) ds) ((tailDelta ∙ tailDelta) ∙ tailDelta) -monad-law-1-5 (mono ds) = refl -monad-law-1-5 (delta (mono x) ds) = {!!} -monad-law-1-5 (delta (delta x d) ds) = {!!} - -monad-law-1-4 : {l : Level} {A : Set l} -> (x : A) -> (ds : Delta (Delta (Delta A))) -> - delta x (bind (fmap mu ds) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡ - bind (delta (mono x) (bind ds ((tailDelta ∙ tailDelta ) ∙ tailDelta))) (tailDelta ∙ tailDelta) -monad-law-1-4 x (mono (mono ds)) = refl -monad-law-1-4 x (mono (delta (mono xx) ds)) = begin - delta x (bind (fmap mu (mono (delta (mono xx) ds))) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x (bind (mono (mu (delta (mono xx) ds))) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x (bind (mono (bind (delta (mono xx) ds) id)) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x (bind (mono (deltaAppend (headDelta (mono xx)) (bind ds tailDelta))) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x (bind (mono (deltaAppend (mono xx) (bind ds tailDelta))) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x (bind (mono (delta xx (bind ds tailDelta))) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x ((tailDelta ∙ (tailDelta ∙ tailDelta)) (delta xx (bind ds tailDelta))) - ≡⟨ refl ⟩ - delta x ((tailDelta ∙ tailDelta) (bind ds tailDelta)) - ≡⟨ cong (\d -> delta x d) (monad-law-1-5 ds) ⟩ - delta x (bind ((tailDelta ∙ tailDelta) ds) ((tailDelta ∙ tailDelta) ∙ tailDelta)) - ≡⟨ refl ⟩ - deltaAppend (mono x) (bind ((tailDelta ∙ tailDelta) ds) ((tailDelta ∙ tailDelta) ∙ tailDelta)) - ≡⟨ refl ⟩ - deltaAppend (headDelta ((tailDelta ∙ tailDelta) (mono x))) (bind ((tailDelta ∙ tailDelta) ds) ((tailDelta ∙ tailDelta) ∙ tailDelta)) - ≡⟨ refl ⟩ - bind (delta (mono x) ((tailDelta ∙ tailDelta) ds)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (delta (mono x) (bind (mono (delta (mono xx) ds)) ((tailDelta ∙ tailDelta) ∙ tailDelta))) (tailDelta ∙ tailDelta) - ∎ -monad-law-1-4 x (mono (delta (delta x₁ ds) ds₁)) = {!!} -monad-law-1-4 x (delta ds ds₁) = {!!} - -monad-law-1-3 : {l : Level} {A : Set l} -> (ds : Delta (Delta A)) -> - tailDelta (bind ds tailDelta) ≡ bind (tailDelta ds) (tailDelta ∙ tailDelta) -monad-law-1-3 (mono ds) = refl -monad-law-1-3 (delta (mono x) ds) = refl -monad-law-1-3 (delta (delta x (mono x₁)) ds) = refl -monad-law-1-3 (delta (delta x (delta x₁ d)) ds) = refl +monad-law-1-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> + (fmap mu d) ≡ (bind d tailDelta) +monad-law-1-1 (mono (mono d)) = refl +monad-law-1-1 (mono (delta (mono x) ds)) = begin + fmap mu (mono (delta (mono x) ds)) + ≡⟨ refl ⟩ + mono (mu (delta (mono x) ds)) + ≡⟨ refl ⟩ + mono (deltaAppend (headDelta (mono x)) (bind ds tailDelta)) + ≡⟨ refl ⟩ + mono (delta x (bind ds tailDelta)) + ≡⟨ {!!} ⟩ --? + ds + ≡⟨ refl ⟩ + tailDelta (delta (mono x) ds) + ≡⟨ refl ⟩ + bind (mono (delta (mono x) ds)) tailDelta + ∎ -monad-law-1-sub-sub : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> - bind (fmap mu d) (tailDelta ∙ tailDelta) ≡ bind (bind d (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) -monad-law-1-sub-sub (mono (mono d)) = refl -monad-law-1-sub-sub (mono (delta (mono x) ds)) = begin - bind (fmap mu (mono (delta (mono x) ds))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (mono (mu (delta (mono x) ds))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (mono (bind (delta (mono x) ds) id)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (mono (deltaAppend (headDelta (mono x)) (bind ds tailDelta))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (mono (deltaAppend (mono x) (bind ds tailDelta))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (mono (delta x (bind ds tailDelta))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (delta x (bind ds tailDelta)) - ≡⟨ refl ⟩ - tailDelta (bind ds tailDelta) - ≡⟨ monad-law-1-3 ds ⟩ - bind (tailDelta ds) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind ((tailDelta ∙ tailDelta) (delta (mono x) ds)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (bind (mono (delta (mono x) ds)) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (bind (headDelta (tailDelta (mono (delta (mono x) ds)))) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (bind (mono (delta (mono x) ds)) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) - ∎ -monad-law-1-sub-sub (mono (delta (delta x (mono x₁)) ds)) = begin - bind (fmap mu (mono (delta (delta x (mono x₁)) ds))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (mono (mu (delta (delta x (mono x₁)) ds))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (mu (delta (delta x (mono x₁)) ds)) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (bind (delta (delta x (mono x₁)) ds) id) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (deltaAppend (headDelta (delta x (mono x₁))) (bind ds (tailDelta ∙ id))) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (deltaAppend (mono x) (bind ds (tailDelta ∙ id))) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (delta x (bind ds (tailDelta ∙ id))) - ≡⟨ refl ⟩ - tailDelta (bind ds (tailDelta ∙ id)) - ≡⟨ monad-law-1-3 ds ⟩ - bind (tailDelta ds) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind ((tailDelta ∙ tailDelta) (delta (delta x (mono x₁)) ds)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (bind (mono (delta (delta x (mono x₁)) ds)) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) - ∎ -monad-law-1-sub-sub (mono (delta (delta x (delta xx d)) ds)) = begin - bind (fmap mu (mono (delta (delta x (delta xx d)) ds))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (mono (mu (delta (delta x (delta xx d)) ds))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (mu (delta (delta x (delta xx d)) ds)) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (bind (delta (delta x (delta xx d)) ds) id) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (deltaAppend (headDelta (delta x (delta xx d))) (bind ds tailDelta)) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (deltaAppend (mono x) (bind ds tailDelta)) - ≡⟨ refl ⟩ - (tailDelta ∙ tailDelta) (delta x (bind ds tailDelta)) - ≡⟨ refl ⟩ - tailDelta (bind ds tailDelta) - ≡⟨ monad-law-1-3 ds ⟩ - bind (tailDelta ds) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind ((tailDelta ∙ tailDelta) (delta (delta x (delta xx d)) ds)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (bind (mono (delta (delta x (delta xx d)) ds)) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) - ∎ -monad-law-1-sub-sub (delta (mono (mono x)) ds) = begin - bind (fmap mu (delta (mono (mono x)) ds)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (delta (mu (mono (mono x))) (fmap mu ds)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (delta (mono x) (fmap mu ds)) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - deltaAppend (headDelta ((tailDelta ∙ tailDelta) (mono x))) (bind (fmap mu ds) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - deltaAppend ((tailDelta ∙ tailDelta) (mono x)) (bind (fmap mu ds) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - deltaAppend (mono x) (bind (fmap mu ds) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x (bind (fmap mu ds) (tailDelta ∙ (tailDelta ∙ tailDelta))) - ≡⟨ monad-law-1-4 x ds ⟩ -- ? - bind (delta (mono x) (bind ds ((tailDelta ∙ tailDelta ) ∙ tailDelta))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (delta (tailDelta (mono x)) (bind ds (tailDelta ∙ (tailDelta ∙ tailDelta)))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (deltaAppend (mono (mono x)) (bind ds (tailDelta ∙ (tailDelta ∙ tailDelta)))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (deltaAppend (headDelta ((tailDelta ∙ tailDelta) (mono (mono x)))) (bind ds (tailDelta ∙ (tailDelta ∙ tailDelta)))) (tailDelta ∙ tailDelta) - ≡⟨ refl ⟩ - bind (bind (delta (mono (mono x)) ds) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) - ∎ -monad-law-1-sub-sub (delta (mono (delta x d)) ds) = {!!} -monad-law-1-sub-sub (delta (delta d d₁) ds) = {!!} - - -monad-law-1-sub : {l : Level} {A : Set l} -> (x : Delta (Delta A)) -> (d : Delta (Delta (Delta A))) -> - deltaAppend (headDelta (mu x)) (bind (fmap mu d) tailDelta) ≡ mu (deltaAppend (headDelta x) (bind d tailDelta)) -monad-law-1-sub (mono (mono _)) (mono (mono _)) = refl -monad-law-1-sub (mono (mono _)) (mono (delta (mono _) _)) = refl -monad-law-1-sub (mono (mono _)) (mono (delta (delta _ _) _)) = refl -monad-law-1-sub (mono (mono x)) (delta (mono (mono xx)) d) = begin - deltaAppend (headDelta (mu (mono (mono x)))) (bind (fmap mu (delta (mono (mono xx)) d)) tailDelta) - ≡⟨ refl ⟩ - deltaAppend (headDelta (mu (mono (mono x)))) (bind (delta (mu (mono (mono xx))) (fmap mu d)) tailDelta) - ≡⟨ refl ⟩ - deltaAppend (headDelta (bind (mono (mono x)) id)) (bind (delta (mu (mono (mono xx))) (fmap mu d)) tailDelta) - ≡⟨ refl ⟩ - deltaAppend (headDelta (mono x)) (bind (delta (mu (mono (mono xx))) (fmap mu d)) tailDelta) - ≡⟨ refl ⟩ - deltaAppend (headDelta (mono x)) (bind (delta (mono xx) (fmap mu d)) tailDelta) - ≡⟨ refl ⟩ - deltaAppend (mono x) (bind (delta (mono xx) (fmap mu d)) tailDelta) - ≡⟨ refl ⟩ - deltaAppend (mono x) (bind (delta (mono xx) (fmap mu d)) tailDelta) - ≡⟨ refl ⟩ - deltaAppend (mono x) (deltaAppend (tailDelta (mono xx)) (bind (fmap mu d) (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - deltaAppend (mono x) (deltaAppend (mono xx) (bind (fmap mu d) (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - deltaAppend (mono x) (deltaAppend (mu (mono (mono xx))) (bind (fmap mu d) (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - deltaAppend (mono x) (deltaAppend (mono xx) (bind (fmap mu d) (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x (deltaAppend (mono xx) (bind (fmap mu d) (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x (delta xx (bind (fmap mu d) (tailDelta ∙ tailDelta))) - ≡⟨ cong (\d -> (delta x (delta xx d))) (monad-law-1-sub-sub d) ⟩ -- ??? - delta x (delta xx (bind (bind d (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta))) - ≡⟨ refl ⟩ - delta x ((deltaAppend (mono xx) (bind (bind d (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta)))) - ≡⟨ refl ⟩ - delta x ((deltaAppend (tailDelta (mono xx)) (bind (bind d (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta)))) - ≡⟨ refl ⟩ - delta x (bind (delta (mono xx) (bind d (tailDelta ∙ tailDelta))) tailDelta) - ≡⟨ refl ⟩ - delta x (bind (deltaAppend (mono (mono xx)) (bind d (tailDelta ∙ tailDelta))) tailDelta) - ≡⟨ refl ⟩ - delta x (bind (deltaAppend (headDelta (tailDelta (mono (mono xx)))) (bind d (tailDelta ∙ tailDelta))) tailDelta) - ≡⟨ refl ⟩ - delta x (bind (bind (delta (mono (mono xx)) d) tailDelta) tailDelta) - ≡⟨ refl ⟩ - deltaAppend (mono x) (bind (bind (delta (mono (mono xx)) d) tailDelta) tailDelta) - ≡⟨ refl ⟩ - bind (delta (mono x) (bind (delta (mono (mono xx)) d) tailDelta)) id - ≡⟨ refl ⟩ - mu (delta (mono x) (bind (delta (mono (mono xx)) d) tailDelta)) - ≡⟨ refl ⟩ - mu (deltaAppend (mono (mono x)) (bind (delta (mono (mono xx)) d) tailDelta)) - ≡⟨ refl ⟩ - mu (deltaAppend (headDelta (mono (mono x))) (bind (delta (mono (mono xx)) d) tailDelta)) - ∎ -monad-law-1-sub (mono (mono x)) (delta (mono (delta x₁ d)) d₁) = {!!} -monad-law-1-sub (mono (mono x)) (delta (delta d d₁) d₂) = {!!} -monad-law-1-sub (mono (delta x x₁)) d = {!!} -monad-law-1-sub (delta x x₁) d = {!!} +monad-law-1-1 (mono (delta (delta x d) ds)) = {!!} +monad-law-1-1 (delta d ds) = {!!} -- monad-law-1 : join . fmap join = join . join monad-law-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) d) ≡ ((mu ∙ mu) d) monad-law-1 (mono d) = refl -monad-law-1 (delta x d) = begin - (mu ∙ (fmap mu)) (delta x d) +monad-law-1 (delta (mono x) d) = begin + (mu ∙ fmap mu) (delta (mono x) d) ≡⟨ refl ⟩ - mu (fmap mu (delta x d)) + mu (fmap mu (delta (mono x) d)) ≡⟨ refl ⟩ - mu (delta (mu x) (fmap mu d)) + mu (delta (mu (mono x)) (fmap mu d)) ≡⟨ refl ⟩ - bind (delta (mu x) (fmap mu d)) id + mu (delta x (fmap mu d)) + ≡⟨ cong (\d -> mu (delta x d)) (monad-law-1-1 d) ⟩ -- ? + mu (delta x (bind d tailDelta)) ≡⟨ refl ⟩ - deltaAppend (headDelta (mu x)) (bind (fmap mu d) tailDelta) - ≡⟨ monad-law-1-sub x d ⟩ - mu (deltaAppend (headDelta x) (bind d tailDelta)) + mu (deltaAppend (headDelta (mono x)) (bind d tailDelta)) ≡⟨ refl ⟩ - mu (bind (delta x d) id) - ≡⟨ refl ⟩ - mu (mu (delta x d)) + mu (mu (delta (mono x) d)) ≡⟨ refl ⟩ - (mu ∙ mu) (delta x d) + (mu ∙ mu) (delta (mono x) d) ∎ - --- split d -{- -monad-law-1 (delta x (mono d)) = begin - - (mu ∙ fmap mu) (delta x (mono d)) +monad-law-1 (delta (delta (mono x) xs) d) = begin + (mu ∙ fmap mu) (delta (delta (mono x) xs) d) + ≡⟨ refl ⟩ + mu (fmap mu (delta (delta (mono x) xs) d)) + ≡⟨ refl ⟩ + mu (delta (mu (delta (mono x) xs)) (fmap mu d)) + ≡⟨ refl ⟩ + mu (delta (deltaAppend (headDelta (mono x)) (bind xs tailDelta)) (fmap mu d)) ≡⟨ refl ⟩ - mu (fmap mu (delta x (mono d))) + mu (delta (delta x (bind xs tailDelta)) (fmap mu d)) ≡⟨ refl ⟩ - mu (delta (mu x) (mono (mu d))) + deltaAppend (headDelta (delta x (bind xs tailDelta))) (bind (fmap mu d) tailDelta) ≡⟨ refl ⟩ - bind (delta (mu x) (mono (mu d))) id + delta x (bind (fmap mu d) tailDelta) + ≡⟨ cong (\d -> delta x (bind d tailDelta)) (monad-law-1-1 d) ⟩ + delta x (bind (bind d tailDelta) tailDelta) ≡⟨ refl ⟩ - deltaAppend (headDelta (mu x)) (bind (mono (mu d)) tailDelta) + deltaAppend (headDelta (mono x)) (bind (bind d tailDelta) tailDelta) ≡⟨ refl ⟩ - deltaAppend (headDelta (mu x)) (tailDelta (mu d)) - ≡⟨ {!!} ⟩ - mu (deltaAppend (headDelta x) (tailDelta d)) + mu (delta (mono x) (bind d tailDelta)) ≡⟨ refl ⟩ - mu (deltaAppend (headDelta x) (tailDelta (id d))) - ≡⟨ refl ⟩ - mu (deltaAppend (headDelta x) ((tailDelta ∙ id) d)) + mu (deltaAppend (mono (mono x)) (bind d tailDelta)) ≡⟨ refl ⟩ - mu (deltaAppend (headDelta x) (bind (mono d) (tailDelta ∙ id))) - ≡⟨ refl ⟩ - mu (bind (delta x (mono d)) id) + mu (deltaAppend (headDelta (delta (mono x) xs)) (bind d tailDelta)) ≡⟨ refl ⟩ - mu (mu (delta x (mono d))) + mu (mu (delta (delta (mono x) xs) d)) ≡⟨ refl ⟩ - (mu ∙ mu) (delta x (mono d)) + (mu ∙ mu) (delta (delta (mono x) xs) d) ∎ -monad-law-1 (delta x (delta d ds)) = begin - (mu ∙ fmap mu) (delta x (delta d ds)) +monad-law-1 (delta (delta (delta x d) xs) ds) = begin + (mu ∙ fmap mu) (delta (delta (delta x d) xs) ds) + ≡⟨ refl ⟩ + mu (fmap mu (delta (delta (delta x d) xs) ds)) ≡⟨ refl ⟩ - mu (fmap mu (delta x (delta d ds))) + mu (delta (mu (delta (delta x d) xs)) (fmap mu ds)) + ≡⟨ refl ⟩ + mu (delta (deltaAppend (headDelta (delta x d)) (bind xs tailDelta)) (fmap mu ds)) ≡⟨ refl ⟩ - mu (delta (mu x) (delta (mu d) (fmap mu ds))) + mu (delta (delta x (bind xs tailDelta)) (fmap mu ds)) ≡⟨ refl ⟩ - bind (delta (mu x) (delta (mu d) (fmap mu ds))) id + deltaAppend (headDelta (delta x (bind xs tailDelta))) (bind (fmap mu ds) tailDelta) ≡⟨ refl ⟩ - deltaAppend (headDelta (mu x)) (bind (delta (mu d) (fmap mu ds)) tailDelta) + delta x (bind (fmap mu ds) tailDelta) + ≡⟨ cong (\d -> delta x (bind d tailDelta)) (monad-law-1-1 ds) ⟩ + delta x (bind (bind ds tailDelta) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (headDelta (delta x d)) (bind (bind ds tailDelta) tailDelta) ≡⟨ refl ⟩ - deltaAppend (headDelta (mu x)) (deltaAppend (headDelta (tailDelta (mu d))) (bind (fmap mu ds) (tailDelta ∙ tailDelta))) - - ≡⟨ {!!} ⟩ - (mu ∙ mu) (delta x (delta d ds)) + mu (delta (delta x d) (bind ds tailDelta)) + ≡⟨ refl ⟩ + mu (deltaAppend (headDelta (delta (delta x d) xs)) (bind ds tailDelta)) + ≡⟨ refl ⟩ + (mu ∙ mu) (delta (delta (delta x d) xs) ds) ∎ --} - {- monad-law-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) d) ≡ ((mu ∙ mu) d) @@ -472,7 +251,7 @@ monad-law-1 (delta x (delta xx d)) = {!!} monad-law-1 (delta x d) = begin - (mu ∙ fmap mu) (delta x d) + (mu ∙ fmap mu) (delta x d) ≡⟨ refl ⟩ mu ((fmap mu) (delta x d)) ≡⟨ refl ⟩