Mercurial > hg > Members > atton > delta_monad
changeset 98:b7f0879e854e
Trying Monad-laws for DeltaM
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 21 Jan 2015 17:43:53 +0900 |
parents | f26a954cd068 |
children | 0580e1642477 |
files | agda/deltaM/monad.agda |
diffstat | 1 files changed, 123 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/agda/deltaM/monad.agda Wed Jan 21 17:43:53 2015 +0900 @@ -0,0 +1,123 @@ +open import Level +open import Relation.Binary.PropositionalEquality +open ≡-Reasoning + +open import basic +open import delta +open import delta.functor +open import deltaM +open import deltaM.functor +open import laws + +module deltaM.monad where +open Functor +open NaturalTransformation +open Monad + + +postulate deltaM-mu-is-natural-transformation : {l : Level} {A : Set l} + {M : {l' : Level} -> Set l' -> Set l'} -> + {functorM : {l' : Level} -> Functor {l'} M} + {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M (functorM ) } -> + NaturalTransformation (\A -> DeltaM M (DeltaM M A)) (\A -> DeltaM M A) + {deltaM-fmap ∙ deltaM-fmap} {deltaM-fmap {l}} + (deltaM-mu {_} {_} {M} {functorM} {monadM}) + +headDeltaM-commute : {l : Level} {A B : Set l} + {M : {l' : Level} -> Set l' -> Set l'} -> + {functorM : {l' : Level} -> Functor {l'} M} -> + {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M (functorM ) } -> + (f : A -> B) -> (x : DeltaM M {functorM} {monadM} A) -> + headDeltaM (deltaM-fmap f x) ≡ fmap functorM f (headDeltaM x) +headDeltaM-commute f (deltaM (mono x)) = refl +headDeltaM-commute f (deltaM (delta x d)) = refl + + +headDeltaM-is-natural-transformation : {l : Level} {A : Set l} + {M : {l' : Level} -> Set l' -> Set l'} -> + {functorM : {l' : Level} -> Functor {l'} M} + {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM } -> + NaturalTransformation {l} (\A -> DeltaM M {functorM} {monadM} A) M + {\f d → deltaM (mono (headDeltaM (deltaM-fmap f d)))} {fmap functorM} headDeltaM +-- {deltaM-fmap} {fmap (functorM {l} {A})} headDeltaM +headDeltaM-is-natural-transformation = record { commute = headDeltaM-commute } + + + +deltaM-association-law : {l : Level} {A : Set l} + {M : {l' : Level} -> Set l' -> Set l'} + (functorM : {l' : Level} -> Functor {l'} M) + (monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM) + -> (d : DeltaM M (DeltaM M (DeltaM M {functorM} {monadM} A))) + -> ((deltaM-mu ∙ (deltaM-fmap deltaM-mu)) d) ≡ ((deltaM-mu ∙ deltaM-mu) d) +deltaM-association-law functorM monadM (deltaM x) = {!!} +{- + begin + (deltaM-mu ∙ deltaM-fmap deltaM-mu) d ≡⟨ refl ⟩ + deltaM-mu (deltaM-fmap deltaM-mu d) ≡⟨ {!!} ⟩ + deltaM-mu (deltaM-mu d) ≡⟨ refl ⟩ + (deltaM-mu ∙ deltaM-mu) d + ∎ +-} +{- +deltaM-association-law functorM monadM (deltaM (mono x)) = begin + (deltaM-mu ∙ deltaM-fmap deltaM-mu) (deltaM (mono x)) ≡⟨ refl ⟩ + deltaM-mu (deltaM-fmap deltaM-mu (deltaM (mono x))) ≡⟨ refl ⟩ + deltaM-mu (deltaM (delta-fmap (fmap functorM deltaM-mu) (mono x))) ≡⟨ refl ⟩ + deltaM-mu (deltaM (mono (fmap functorM deltaM-mu x))) ≡⟨ refl ⟩ + deltaM-bind (deltaM (mono (fmap functorM deltaM-mu x))) id ≡⟨ refl ⟩ + deltaM (mono (bind monadM (fmap functorM deltaM-mu x) (headDeltaM ∙ id))) ≡⟨ refl ⟩ + deltaM (mono (bind monadM (fmap functorM deltaM-mu x) headDeltaM)) ≡⟨ {!!} ⟩ + deltaM (mono (bind monadM (bind monadM x headDeltaM) headDeltaM)) ≡⟨ refl ⟩ + deltaM (mono (bind monadM (bind monadM x (headDeltaM ∙ id)) (headDeltaM ∙ id))) ≡⟨ refl ⟩ + deltaM-mu (deltaM (mono (bind monadM x (headDeltaM ∙ id)))) ≡⟨ refl ⟩ + deltaM-mu (deltaM-mu (deltaM (mono x))) ≡⟨ refl ⟩ + (deltaM-mu ∙ deltaM-mu) (deltaM (mono x)) ∎ +deltaM-association-law functorM monadM (deltaM (delta x d)) = {!!} +-} + +{- + +nya : {l : Level} {A B C : Set l} -> + {M : {l' : Level} -> Set l' -> Set l'} + {functorM : {l' : Level} -> Functor {l'} M } + {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM} + (m : DeltaM M {functorM} {monadM} A) -> (f : A -> (DeltaM M {functorM} {monadM} B)) -> (g : B -> (DeltaM M C)) -> + (x : M A) -> + (deltaM (fmap delta-is-functor (\x -> bind {l} {A} monadM x (headDeltaM ∙ (\x -> deltaM-bind (f x) g))) (mono x))) ≡ + (deltaM-bind (deltaM (fmap delta-is-functor (\x -> (bind {l} {A} monadM x (headDeltaM ∙ f))) (mono x))) g) +nya = {!!} + +deltaM-monad-law-h-3 : {l : Level} {A B C : Set l} -> + {M : {l' : Level} -> Set l' -> Set l'} + {functorM : {l' : Level} -> Functor {l'} M } + {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM} + (m : DeltaM M {functorM} {monadM} A) -> (f : A -> (DeltaM M B)) -> (g : B -> (DeltaM M C)) -> + (deltaM-bind m (\x -> deltaM-bind (f x) g)) ≡ (deltaM-bind (deltaM-bind m f) g) +{- +deltaM-monad-law-h-3 {l} {A} {B} {C} {M} {functorM} {monadM} (deltaM (mono x)) f g = begin + (deltaM-bind (deltaM (mono x)) (\x -> deltaM-bind (f x) g)) ≡⟨ refl ⟩ + + (deltaM (mono (bind {l} {A} monadM x (headDeltaM ∙ (\x -> deltaM-bind (f x) g))))) ≡⟨ {!!} ⟩ + (deltaM-bind (deltaM (fmap delta-is-functor (\x -> (bind {l} {A} monadM x (headDeltaM ∙ f))) (mono x))) g) ≡⟨ refl ⟩ + (deltaM-bind (deltaM (mono (bind {l} {A} monadM x (headDeltaM ∙ f)))) g) ≡⟨ refl ⟩ + (deltaM-bind (deltaM-bind (deltaM (mono x)) f) g) ∎ +-} + +deltaM-monad-law-h-3 {l} {A} {B} {C} {M} {functorM} {monadM} (deltaM (mono x)) f g = begin + (deltaM-bind (deltaM (mono x)) (\x -> deltaM-bind (f x) g)) ≡⟨ refl ⟩ + (deltaM (mono (bind {l} {A} monadM x (headDeltaM ∙ (\x -> deltaM-bind (f x) g))))) ≡⟨ {!!} ⟩ +-- (deltaM (fmap delta-is-functor (\x -> bind {l} {A} monadM x (headDeltaM ∙ (\x -> deltaM-bind (f x) g))) (mono x))) ≡⟨ {!!} ⟩ + deltaM (mono (bind {l} {B} monadM (bind {_} {A} monadM x (headDeltaM ∙ f)) (headDeltaM ∙ g))) ≡⟨ {!!} ⟩ + deltaM (mono (bind {l} {B} monadM (bind {_} {A} monadM x (headDeltaM ∙ f)) (headDeltaM ∙ g))) ≡⟨ {!!} ⟩ + (deltaM-bind (deltaM (mono (bind {l} {A} monadM x (headDeltaM ∙ f)))) g) ≡⟨ refl ⟩ + (deltaM-bind (deltaM-bind (deltaM (mono x)) f) g) + ∎ +deltaM-monad-law-h-3 (deltaM (delta x d)) f g = {!!} +{- + begin + (deltaM-bind m (\x -> deltaM-bind (f x) g)) ≡⟨ {!!} ⟩ + (deltaM-bind (deltaM-bind m f) g) + ∎ +-} +-}