Mercurial > hg > Members > atton > delta_monad
changeset 128:d9a30f696933
Fix association-law for DeltaM in (S n)
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 03 Feb 2015 12:24:26 +0900 (2015-02-03) |
parents | d56596e4e784 |
children | d57c88171f38 |
files | agda/deltaM/monad.agda |
diffstat | 1 files changed, 94 insertions(+), 194 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/deltaM/monad.agda Tue Feb 03 12:13:40 2015 +0900 +++ b/agda/deltaM/monad.agda Tue Feb 03 12:24:26 2015 +0900 @@ -73,7 +73,7 @@ -{- + -- main proofs @@ -186,7 +186,7 @@ ≡⟨ refl ⟩ deltaM-mu (deltaM-fmap (deltaM-fmap f) (deltaM (delta x d))) ∎ - +{- @@ -243,7 +243,7 @@ ∎ --} + @@ -294,240 +294,140 @@ deltaM (delta x d) ∎ - -{- - -postulate nya : {l : Level} {A : Set l} - (M : Set l -> Set l) (fm : Functor M) (mm : Monad M fm) - (d : DeltaM M {fm} {mm} (DeltaM M {fm} {mm} (DeltaM M {fm} {mm} A (S O)) (S O)) (S O)) -> - deltaM-mu (deltaM-fmap deltaM-mu d) ≡ deltaM-mu (deltaM-mu d) - - - - - +-} deltaM-association-law : {l : Level} {A : Set l} {n : Nat} - (M : Set l -> Set l) (fm : Functor M) (mm : Monad M fm) - (d : DeltaM M {fm} {mm} (DeltaM M {fm} {mm} (DeltaM M {fm} {mm} A (S n)) (S n)) (S n)) -> + {T : Set l -> Set l} {F : Functor T} {M : Monad T F} + (d : DeltaM M (DeltaM M (DeltaM M A (S n)) (S n)) (S n)) -> deltaM-mu (deltaM-fmap deltaM-mu d) ≡ deltaM-mu (deltaM-mu d) -deltaM-association-law {l} {A} {O} M fm mm (deltaM (mono x)) = nya {l} {A} M fm mm (deltaM (mono x)) +deltaM-association-law {l} {A} {O} {T} {F} {M} (deltaM (mono x)) = {!!} {- -begin - deltaM-mu (deltaM-fmap deltaM-mu (deltaM (mono x))) ≡⟨ refl ⟩ - deltaM-mu (deltaM (mono (fmap fm deltaM-mu x))) ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M A (S O)} {monadM = mm} (deltaM (mono (fmap fm deltaM-mu x))))))) ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x)))) ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm (headDeltaM {A = A} {monadM = mm}) (fmap fm - (\d -> (deltaM (mono (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d)))))) x)))) - ≡⟨ cong (\de -> deltaM (mono (mu mm de))) - (sym (covariant fm (\d -> (deltaM (mono (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d)))))) headDeltaM x)) ⟩ - deltaM (mono (mu mm (fmap fm ((headDeltaM {A = A} {monadM = mm}) ∙ - (\d -> (deltaM (mono (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d))))))) x))) - ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm (\d -> (headDeltaM {A = A} {monadM = mm} (deltaM (mono (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d))))))) x))) - ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm (\d -> (mu mm (fmap fm headDeltaM ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}) d)))) x))) - ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm ((mu mm) ∙ (((fmap fm headDeltaM)) ∙ ((headDeltaM {l} {DeltaM M A (S O)} {monadM = mm})))) x))) - ≡⟨ cong (\de -> deltaM (mono (mu mm de))) (covariant fm ((fmap fm headDeltaM) ∙ (headDeltaM)) (mu mm) x )⟩ - deltaM (mono (mu mm (((fmap fm (mu mm)) ∙ (fmap fm ((fmap fm headDeltaM) ∙ (headDeltaM {l} {DeltaM M A (S O)} {monadM = mm})))) x))) - ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm (mu mm) ((fmap fm ((fmap fm headDeltaM) ∙ (headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}))) x)))) - ≡⟨ cong (\de -> deltaM (mono (mu mm (fmap fm (mu mm) de)))) (covariant fm headDeltaM (fmap fm headDeltaM) x) ⟩ - deltaM (mono (mu mm (fmap fm (mu mm) (((fmap fm (fmap fm headDeltaM)) ∙ (fmap fm (headDeltaM {l} {DeltaM M A (S O)} {monadM = mm}))) x)))) - ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm (mu mm) (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x))))) - ≡⟨ cong (\de -> deltaM (mono de)) (association-law mm (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x))) ⟩ - deltaM (mono (mu mm (mu mm (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x))))) - ≡⟨ cong (\de -> deltaM (mono (mu mm de))) (mu-is-nt mm headDeltaM (fmap fm headDeltaM x)) ⟩ - deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x))))) ≡⟨ refl ⟩ - deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M A (S O)} {monadM = mm} (deltaM (mono (mu mm (fmap fm headDeltaM x)))))))) ≡⟨ refl ⟩ - deltaM-mu (deltaM (mono (mu mm (fmap fm headDeltaM x)))) ≡⟨ refl ⟩ - deltaM-mu (deltaM (mono (mu mm (fmap fm headDeltaM (headDeltaM {A = DeltaM M (DeltaM M A (S O)) (S O)} {monadM = mm} (deltaM (mono x))))))) ≡⟨ refl ⟩ - deltaM-mu (deltaM-mu (deltaM (mono x))) ∎ --} -deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = begin +deltaM-association-law {l} {A} {S n} {T} {F} {M} (deltaM (delta x d)) = begin deltaM-mu (deltaM-fmap deltaM-mu (deltaM (delta x d))) ≡⟨ refl ⟩ - deltaM-mu (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d))) + deltaM-mu (deltaM (delta (fmap F deltaM-mu x) (delta-fmap (fmap F deltaM-mu) d))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (fmap fm (headDeltaM {A = A} {monadM = mm}) (headDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d)))))) - (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d)))))))) + deltaM (delta (mu M (fmap F (headDeltaM {M = M}) (headDeltaM {A = DeltaM M A (S (S n))} {M = M} (deltaM (delta (fmap F deltaM-mu x) (delta-fmap (fmap F deltaM-mu) d)))))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM (deltaM (delta (fmap F deltaM-mu x) (delta-fmap (fmap F deltaM-mu) d)))))))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (fmap fm (headDeltaM {A = A} {monadM = mm}) (fmap fm deltaM-mu x))) - (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm de) (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d))))))) - (sym (covariant fm deltaM-mu headDeltaM x)) ⟩ - deltaM (delta (mu mm (fmap fm ((headDeltaM {A = A} {monadM = mm}) ∙ deltaM-mu) x)) - (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm de) - (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d))))))) - (fmap-headDeltaM-with-deltaM-mu {A = A} {monadM = mm} x) ⟩ - deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) - (unDeltaM {A = A} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))))) + deltaM (delta (mu M (fmap F (headDeltaM {A = A} {M = M}) (fmap F deltaM-mu x))) + (unDeltaM {A = A} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap F deltaM-mu) d)))))) + ≡⟨ cong (\de -> deltaM (delta (mu M de) (unDeltaM {A = A} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap F deltaM-mu) d))))))) + (sym (covariant F deltaM-mu headDeltaM x)) ⟩ + deltaM (delta (mu M (fmap F ((headDeltaM {A = A} {M = M}) ∙ deltaM-mu) x)) + (unDeltaM {A = A} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap F deltaM-mu) d)))))) + ≡⟨ cong (\de -> deltaM (delta (mu M de) + (unDeltaM {A = A} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap F deltaM-mu) d))))))) + (fmap-headDeltaM-with-deltaM-mu {A = A} {M = M} x) ⟩ + deltaM (delta (mu M (fmap F (((mu M) ∙ (fmap F headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {A = A} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap F deltaM-mu) d)))))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-fmap deltaM-mu (deltaM d)))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) - (unDeltaM {monadM = mm} (deltaM-mu de)))) - (sym (deltaM-covariant fm tailDeltaM deltaM-mu (deltaM d))) ⟩ - deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap (tailDeltaM ∙ deltaM-mu) (deltaM d))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) - (unDeltaM {monadM = mm} (deltaM-mu de)))) + deltaM (delta (mu M (fmap F (((mu M) ∙ (fmap F headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-fmap deltaM-mu (deltaM d)))))) + ≡⟨ cong (\de -> deltaM (delta (mu M (fmap F (((mu M) ∙ (fmap F headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {M = M} (deltaM-mu de)))) + (sym (deltaM-covariant tailDeltaM deltaM-mu (deltaM d))) ⟩ + deltaM (delta (mu M (fmap F (((mu M) ∙ (fmap F headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap (tailDeltaM ∙ deltaM-mu) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu M (fmap F (((mu M) ∙ (fmap F headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {M = M} (deltaM-mu de)))) (fmap-tailDeltaM-with-deltaM-mu (deltaM d)) ⟩ - deltaM (delta (mu mm (fmap fm (((mu mm) ∙ (fmap fm headDeltaM)) ∙ headDeltaM) x)) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm de) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) - (covariant fm headDeltaM ((mu mm) ∙ (fmap fm headDeltaM)) x) ⟩ - deltaM (delta (mu mm (((fmap fm ((mu mm) ∙ (fmap fm headDeltaM))) ∙ (fmap fm headDeltaM)) x)) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + deltaM (delta (mu M (fmap F (((mu M) ∙ (fmap F headDeltaM)) ∙ headDeltaM) x)) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu M de) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) + (covariant F headDeltaM ((mu M) ∙ (fmap F headDeltaM)) x) ⟩ + deltaM (delta (mu M (((fmap F ((mu M) ∙ (fmap F headDeltaM))) ∙ (fmap F headDeltaM)) x)) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (((fmap fm ((mu mm) ∙ (fmap fm headDeltaM))) (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm de) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) - (covariant fm (fmap fm headDeltaM) (mu mm) (fmap fm headDeltaM x)) ⟩ + deltaM (delta (mu M (((fmap F ((mu M) ∙ (fmap F headDeltaM))) (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu M de) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) + (covariant F (fmap F headDeltaM) (mu M) (fmap F headDeltaM x)) ⟩ - deltaM (delta (mu mm ((((fmap fm (mu mm)) ∙ (fmap fm (fmap fm headDeltaM))) (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + deltaM (delta (mu M ((((fmap F (mu M)) ∙ (fmap F (fmap F headDeltaM))) (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (fmap fm (mu mm) (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) - ≡⟨ cong (\de -> deltaM (delta de (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) - (association-law mm (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x))) ⟩ - deltaM (delta (mu mm (mu mm (fmap fm (fmap fm headDeltaM) (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm de) (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) - (mu-is-nt mm headDeltaM (fmap fm headDeltaM x)) ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) (unDeltaM {monadM = mm} (deltaM-mu de)))) - (deltaM-covariant fm (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) tailDeltaM (deltaM d)) ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (((deltaM-fmap (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ (deltaM-fmap tailDeltaM)) (deltaM d)))))) + deltaM (delta (mu M (fmap F (mu M) (fmap F (fmap F headDeltaM) (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta de (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) + (association-law M (fmap F (fmap F headDeltaM) (fmap F headDeltaM x))) ⟩ + deltaM (delta (mu M (mu M (fmap F (fmap F headDeltaM) (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu M de) (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d)))))) + (mu-is-nt M headDeltaM (fmap F headDeltaM x)) ⟩ + deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap ((deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ tailDeltaM) (deltaM d))))) + ≡⟨ cong (\de -> deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) (unDeltaM {M = M} (deltaM-mu de)))) + (deltaM-covariant (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) tailDeltaM (deltaM d)) ⟩ + deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (((deltaM-fmap (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) ∙ (deltaM-fmap tailDeltaM)) (deltaM d)))))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (((deltaM-fmap (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) (deltaM-fmap tailDeltaM (deltaM d)))))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) (unDeltaM {monadM = mm} (deltaM-mu de)))) - (deltaM-covariant fm deltaM-mu (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))) ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (((deltaM-fmap deltaM-mu) ∙ (deltaM-fmap (deltaM-fmap tailDeltaM))) (deltaM-fmap tailDeltaM (deltaM d)))))) + deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (((deltaM-fmap (deltaM-mu ∙ (deltaM-fmap tailDeltaM)) (deltaM-fmap tailDeltaM (deltaM d)))))))) + ≡⟨ cong (\de -> deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) (unDeltaM {M = M} (deltaM-mu de)))) + (deltaM-covariant deltaM-mu (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))) ⟩ + deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (((deltaM-fmap deltaM-mu) ∙ (deltaM-fmap (deltaM-fmap tailDeltaM))) (deltaM-fmap tailDeltaM (deltaM d)))))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap deltaM-mu (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) (unDeltaM {monadM = mm} de))) - (deltaM-association-law M fm mm (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d)))) ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-mu (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))))))) + deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap deltaM-mu (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))))))) + ≡⟨ cong (\de -> deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) (unDeltaM {M = M} de))) + (deltaM-association-law (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d)))) ⟩ + deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-mu (deltaM-fmap (deltaM-fmap tailDeltaM) (deltaM-fmap tailDeltaM (deltaM d))))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu de)))) + ≡⟨ cong (\de -> deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu de)))) (sym (deltaM-mu-is-nt tailDeltaM (deltaM-fmap tailDeltaM (deltaM d)))) ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))))) - ≡⟨ cong (\de -> deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM de))))) + deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))))) + ≡⟨ cong (\de -> deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap tailDeltaM de))))) (sym (deconstruct-id (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))) ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM - (deltaM (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))))))) + deltaM (delta (mu M (fmap F headDeltaM (mu M (fmap F headDeltaM x)))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap tailDeltaM + (deltaM (unDeltaM {A = DeltaM M A (S (S n))} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))))))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (headDeltaM {monadM = mm} ((deltaM (delta (mu mm (fmap fm headDeltaM x)) - (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))))))) - (unDeltaM {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ((deltaM (delta (mu mm (fmap fm headDeltaM x)) - (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))))))))) + deltaM (delta (mu M (fmap F headDeltaM (headDeltaM {M = M} ((deltaM (delta (mu M (fmap F headDeltaM x)) + (unDeltaM {A = DeltaM M A (S (S n))} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))))))) + (unDeltaM {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ((deltaM (delta (mu M (fmap F headDeltaM x)) + (unDeltaM {A = DeltaM M A (S (S n))} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))))))))) ≡⟨ refl ⟩ - deltaM-mu (deltaM (delta (mu mm (fmap fm headDeltaM x)) - (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))) - ≡⟨ refl ⟩ - deltaM-mu (deltaM (delta (mu mm (fmap fm headDeltaM (headDeltaM {monadM = mm} (deltaM (delta x d))))) - (unDeltaM {A = DeltaM M A (S (S n))} {monadM = mm} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM (deltaM (delta x d)))))))) - ≡⟨ refl ⟩ - deltaM-mu (deltaM-mu (deltaM (delta x d))) - ∎ -{- -deltaM-association-law {l} {A} {S n} M fm mm (deltaM (delta x d)) = begin - deltaM-mu (deltaM-fmap deltaM-mu (deltaM (delta x d))) ≡⟨ refl ⟩ - deltaM-mu (deltaM (delta-fmap (fmap fm deltaM-mu) (delta x d))) ≡⟨ refl ⟩ - deltaM-mu (deltaM (delta (fmap fm deltaM-mu x) (delta-fmap (fmap fm deltaM-mu) d))) ≡⟨ refl ⟩ - appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) - (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (delta-fmap (fmap fm deltaM-mu) d)))) ≡⟨ refl ⟩ - appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) - (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))) - ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) de) - (sym (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) ⟩ - - appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))))) - (deltaM (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) - ≡⟨ refl ⟩ - deltaM (deltaAppend (mono (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x)))) - (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) + deltaM-mu (deltaM (delta (mu M (fmap F headDeltaM x)) + (unDeltaM {A = DeltaM M A (S (S n))} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d)))))) ≡⟨ refl ⟩ - deltaM (delta (mu mm (fmap fm headDeltaM (fmap fm deltaM-mu x))) - (deconstruct {A = A} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) (delta-fmap (fmap fm deltaM-mu) d)))))) - ≡⟨ {!!} ⟩ - appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) - (deltaM-mu (deltaM-fmap tailDeltaM (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))) - ≡⟨ cong (\de -> appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) - (deltaM-mu (deltaM-fmap tailDeltaM de))) - (sym (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))) ⟩ - appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) - (deltaM-mu (deltaM-fmap tailDeltaM (deltaM (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d))))))) - - ≡⟨ refl ⟩ - appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM (mu mm (fmap fm headDeltaM x)))))) - (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ( (deltaM (delta (mu mm (fmap fm headDeltaM x)) - (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))) + deltaM-mu (deltaM (delta (mu M (fmap F headDeltaM (headDeltaM {M = M} (deltaM (delta x d))))) + (unDeltaM {A = DeltaM M A (S (S n))} {M = M} (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM (deltaM (delta x d)))))))) ≡⟨ refl ⟩ - appendDeltaM (deltaM (mono (mu mm (fmap fm (headDeltaM {monadM = mm}) (headDeltaM {monadM = mm} ((deltaM (delta (mu mm (fmap fm headDeltaM x)) - (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))))) - (deltaM-mu (deltaM-fmap tailDeltaM (tailDeltaM ( (deltaM (delta (mu mm (fmap fm headDeltaM x)) - (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))))))) - ≡⟨ refl ⟩ - deltaM-mu (deltaM (delta (mu mm (fmap fm headDeltaM x)) - (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) - ≡⟨ refl ⟩ - deltaM-mu (deltaM (deltaAppend (mono (mu mm (fmap fm headDeltaM x))) - (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) - ≡⟨ refl ⟩ - deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) - (deltaM (deconstruct {A = DeltaM M A (S (S n))} {mm = mm} (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))))) - ≡⟨ cong (\de -> deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) de)) - (deconstruct-id (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))) ⟩ - deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) - (deltaM-mu (deltaM (delta-fmap (fmap fm tailDeltaM) d)))) - ≡⟨ refl ⟩ - deltaM-mu (appendDeltaM (deltaM (mono (mu mm (fmap fm headDeltaM x)))) - (deltaM-mu (deltaM-fmap tailDeltaM (deltaM d))))≡⟨ refl ⟩ deltaM-mu (deltaM-mu (deltaM (delta x d))) ∎ -} - +{- deltaM-is-monad : {l : Level} {A : Set l} {n : Nat} {M : Set l -> Set l} (functorM : Functor M) - (monadM : Monad M functorM) -> - Monad {l} (\A -> DeltaM M {functorM} {monadM} A (S n)) (deltaM-is-functor {l} {n}) -deltaM-is-monad {l} {A} {n} {M} functorM monadM = + (M : Monad M functorM) -> + Monad {l} (\A -> DeltaM M {functorM} {M} A (S n)) (deltaM-is-functor {l} {n}) +deltaM-is-monad {l} {A} {n} {M} functorM M = record { mu = deltaM-mu ; eta = deltaM-eta ; eta-is-nt = deltaM-eta-is-nt ; mu-is-nt = (\f x -> (sym (deltaM-mu-is-nt f x))) - ; association-law = (deltaM-association-law M functorM monadM) + ; association-law = (deltaM-association-law M functorM M) ; left-unity-law = deltaM-left-unity-law ; right-unity-law = (\x -> (sym (deltaM-right-unity-law x))) } + -}