Mercurial > hg > Members > atton > delta_monad
changeset 123:ee7f5162ec1f
Fix proof functor for DeltaM
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Feb 2015 12:17:50 +0900 |
parents | e1900c89dea9 |
children | 48b44bd85056 |
files | agda/deltaM/functor.agda |
diffstat | 1 files changed, 43 insertions(+), 47 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/deltaM/functor.agda Mon Feb 02 12:12:14 2015 +0900 +++ b/agda/deltaM/functor.agda Mon Feb 02 12:17:50 2015 +0900 @@ -14,67 +14,63 @@ deltaM-preserve-id : {l : Level} {A : Set l} {n : Nat} - {M : Set l -> Set l} - (functorM : Functor M) - {monadM : Monad M functorM} - -> (d : DeltaM M {functorM} {monadM} A (S n)) -> deltaM-fmap id d ≡ id d -deltaM-preserve-id functorM (deltaM (mono x)) = begin - deltaM-fmap id (deltaM (mono x)) ≡⟨ refl ⟩ - deltaM (fmap delta-is-functor (fmap functorM id) (mono x)) ≡⟨ refl ⟩ - deltaM (mono (fmap functorM id x)) ≡⟨ cong (\x -> deltaM (mono x)) (preserve-id functorM x) ⟩ - deltaM (mono (id x)) ≡⟨ cong (\x -> deltaM (mono x)) refl ⟩ - deltaM (mono x) ∎ -deltaM-preserve-id functorM (deltaM (delta x d)) = begin + {T : Set l -> Set l} {F : Functor T} {M : Monad T F} + -> (d : DeltaM M A (S n)) -> deltaM-fmap id d ≡ id d +deltaM-preserve-id {F = F} (deltaM (mono x)) = begin + deltaM-fmap id (deltaM (mono x)) ≡⟨ refl ⟩ + deltaM (fmap delta-is-functor (fmap F id) (mono x)) ≡⟨ refl ⟩ + deltaM (mono (fmap F id x)) ≡⟨ cong (\x -> deltaM (mono x)) (preserve-id F x) ⟩ + deltaM (mono (id x)) ≡⟨ cong (\x -> deltaM (mono x)) refl ⟩ + deltaM (mono x) ∎ +deltaM-preserve-id {F = F} (deltaM (delta x d)) = begin deltaM-fmap id (deltaM (delta x d)) ≡⟨ refl ⟩ - deltaM (fmap delta-is-functor (fmap functorM id) (delta x d)) + deltaM (fmap delta-is-functor (fmap F id) (delta x d)) ≡⟨ refl ⟩ - deltaM (delta (fmap functorM id x) (fmap delta-is-functor (fmap functorM id) d)) - ≡⟨ cong (\x -> deltaM (delta x (fmap delta-is-functor (fmap functorM id) d))) (preserve-id functorM x) ⟩ - deltaM (delta x (fmap delta-is-functor (fmap functorM id) d)) + deltaM (delta (fmap F id x) (fmap delta-is-functor (fmap F id) d)) + ≡⟨ cong (\x -> deltaM (delta x (fmap delta-is-functor (fmap F id) d))) (preserve-id F x) ⟩ + deltaM (delta x (fmap delta-is-functor (fmap F id) d)) ≡⟨ refl ⟩ - appendDeltaM (deltaM (mono x)) (deltaM (fmap delta-is-functor (fmap functorM id) d)) + appendDeltaM (deltaM (mono x)) (deltaM (fmap delta-is-functor (fmap F id) d)) ≡⟨ refl ⟩ appendDeltaM (deltaM (mono x)) (deltaM-fmap id (deltaM d)) - ≡⟨ cong (\d -> appendDeltaM (deltaM (mono x)) d) (deltaM-preserve-id functorM (deltaM d)) ⟩ + ≡⟨ cong (\d -> appendDeltaM (deltaM (mono x)) d) (deltaM-preserve-id {F = F} (deltaM d)) ⟩ appendDeltaM (deltaM (mono x)) (deltaM d) ≡⟨ refl ⟩ deltaM (delta x d) ∎ -deltaM-covariant : {l : Level} {A B C : Set l} {n : Nat} -> - {M : Set l -> Set l} - (functorM : Functor M) - {monadM : Monad M functorM} - (f : B -> C) -> (g : A -> B) -> (d : DeltaM M {functorM} {monadM} A (S n)) -> +deltaM-covariant : {l : Level} {A B C : Set l} {n : Nat} + {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> + (f : B -> C) -> (g : A -> B) -> (d : DeltaM M A (S n)) -> (deltaM-fmap (f ∙ g)) d ≡ ((deltaM-fmap f) ∙ (deltaM-fmap g)) d -deltaM-covariant functorM f g (deltaM (mono x)) = begin - deltaM-fmap (f ∙ g) (deltaM (mono x)) ≡⟨ refl ⟩ - deltaM (delta-fmap (fmap functorM (f ∙ g)) (mono x)) ≡⟨ refl ⟩ - deltaM (mono (fmap functorM (f ∙ g) x)) ≡⟨ cong (\x -> (deltaM (mono x))) (covariant functorM g f x) ⟩ - deltaM (mono (((fmap functorM f) ∙ (fmap functorM g)) x)) ≡⟨ refl ⟩ +deltaM-covariant {F = F} f g (deltaM (mono x)) = begin + deltaM-fmap (f ∙ g) (deltaM (mono x)) ≡⟨ refl ⟩ + deltaM (delta-fmap (fmap F (f ∙ g)) (mono x)) ≡⟨ refl ⟩ + deltaM (mono (fmap F (f ∙ g) x)) ≡⟨ cong (\x -> (deltaM (mono x))) (covariant F g f x) ⟩ + deltaM (mono (((fmap F f) ∙ (fmap F g)) x)) ≡⟨ refl ⟩ deltaM-fmap f (deltaM-fmap g (deltaM (mono x))) ∎ -deltaM-covariant functorM f g (deltaM (delta x d)) = begin +deltaM-covariant {F = F} f g (deltaM (delta x d)) = begin deltaM-fmap (f ∙ g) (deltaM (delta x d)) ≡⟨ refl ⟩ - deltaM (delta-fmap (fmap functorM (f ∙ g)) (delta x d)) + deltaM (delta-fmap (fmap F (f ∙ g)) (delta x d)) ≡⟨ refl ⟩ - deltaM (delta (fmap functorM (f ∙ g) x) (delta-fmap (fmap functorM (f ∙ g)) d)) + deltaM (delta (fmap F (f ∙ g) x) (delta-fmap (fmap F (f ∙ g)) d)) ≡⟨ refl ⟩ - appendDeltaM (deltaM (mono (fmap functorM (f ∙ g) x))) (deltaM (delta-fmap (fmap functorM (f ∙ g)) d)) + appendDeltaM (deltaM (mono (fmap F (f ∙ g) x))) (deltaM (delta-fmap (fmap F (f ∙ g)) d)) ≡⟨ refl ⟩ - appendDeltaM (deltaM (mono (fmap functorM (f ∙ g) x))) (deltaM-fmap (f ∙ g) (deltaM d)) - ≡⟨ cong (\de -> appendDeltaM (deltaM (mono de)) (deltaM-fmap (f ∙ g) (deltaM d))) (covariant functorM g f x) ⟩ - appendDeltaM (deltaM (mono (((fmap functorM f) ∙ (fmap functorM g)) x))) (deltaM-fmap (f ∙ g) (deltaM d)) + appendDeltaM (deltaM (mono (fmap F (f ∙ g) x))) (deltaM-fmap (f ∙ g) (deltaM d)) + ≡⟨ cong (\de -> appendDeltaM (deltaM (mono de)) (deltaM-fmap (f ∙ g) (deltaM d))) (covariant F g f x) ⟩ + appendDeltaM (deltaM (mono (((fmap F f) ∙ (fmap F g)) x))) (deltaM-fmap (f ∙ g) (deltaM d)) ≡⟨ refl ⟩ - appendDeltaM (deltaM (mono (((fmap functorM f) ∙ (fmap functorM g)) x))) (deltaM-fmap (f ∙ g) (deltaM d)) + appendDeltaM (deltaM (mono (((fmap F f) ∙ (fmap F g)) x))) (deltaM-fmap (f ∙ g) (deltaM d)) ≡⟨ refl ⟩ - appendDeltaM (deltaM (delta-fmap ((fmap functorM f) ∙ (fmap functorM g)) (mono x))) (deltaM-fmap (f ∙ g) (deltaM d)) + appendDeltaM (deltaM (delta-fmap ((fmap F f) ∙ (fmap F g)) (mono x))) (deltaM-fmap (f ∙ g) (deltaM d)) ≡⟨ refl ⟩ - appendDeltaM (deltaM ((((delta-fmap (fmap functorM f)) ∙ (delta-fmap (fmap functorM g)))) (mono x))) (deltaM-fmap (f ∙ g) (deltaM d)) - ≡⟨ cong (\de -> appendDeltaM (deltaM ((((delta-fmap (fmap functorM f)) ∙ (delta-fmap (fmap functorM g)))) (mono x))) de) (deltaM-covariant functorM f g (deltaM d)) ⟩ - appendDeltaM (deltaM ((((delta-fmap (fmap functorM f)) ∙ (delta-fmap (fmap functorM g)))) (mono x))) (((deltaM-fmap f) ∙ (deltaM-fmap g)) (deltaM d)) + appendDeltaM (deltaM ((((delta-fmap (fmap F f)) ∙ (delta-fmap (fmap F g)))) (mono x))) (deltaM-fmap (f ∙ g) (deltaM d)) + ≡⟨ cong (\de -> appendDeltaM (deltaM ((((delta-fmap (fmap F f)) ∙ (delta-fmap (fmap F g)))) (mono x))) de) (deltaM-covariant {F = F} f g (deltaM d)) ⟩ + appendDeltaM (deltaM ((((delta-fmap (fmap F f)) ∙ (delta-fmap (fmap F g)))) (mono x))) (((deltaM-fmap f) ∙ (deltaM-fmap g)) (deltaM d)) ≡⟨ refl ⟩ (deltaM-fmap f ∙ deltaM-fmap g) (deltaM (delta x d)) ∎ @@ -82,11 +78,11 @@ deltaM-is-functor : {l : Level} {n : Nat} - {M : Set l -> Set l} - {functorM : Functor M } - {monadM : Monad M functorM} - -> Functor {l} (\A -> DeltaM M {functorM} {monadM} A (S n)) -deltaM-is-functor {_} {_} {_} {functorM} = record { fmap = deltaM-fmap ; - preserve-id = deltaM-preserve-id functorM ; - covariant = (\f g -> deltaM-covariant functorM g f) - } + {T : Set l -> Set l} {F : Functor T} {M : Monad T F} -> + Functor {l} (\A -> DeltaM M A (S n)) +deltaM-is-functor {F = F} = record { fmap = deltaM-fmap + ; preserve-id = deltaM-preserve-id {F = F} + ; covariant = (\f g -> deltaM-covariant {F = F} g f) + } + +