Mercurial > hg > Members > atton > similar_monad
changeset 40:a7cd7740f33e
Add Haskell style Monad-laws and Proof Monad-laws-h-1
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 19 Oct 2014 16:17:46 +0900 |
parents | b9b26b470cc2 |
children | 23474bf242c6 |
files | agda/similar.agda |
diffstat | 1 files changed, 41 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/similar.agda Sun Oct 19 16:00:52 2014 +0900 +++ b/agda/similar.agda Sun Oct 19 16:17:46 2014 +0900 @@ -16,12 +16,12 @@ fmap f (similar xs x ys y) = similar xs (f x) ys (f y) --- Monad +-- Monad (Category) mu : {l : Level} {A : Set l} -> Similar (Similar A) -> Similar A mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y -return : {l : Level} {A : Set l} -> A -> Similar A -return x = similar [] x [] x +eta : {l : Level} {A : Set l} -> A -> Similar A +eta x = similar [] x [] x returnS : {l : Level} {A : Set l} -> A -> Similar A returnS x = similar [[ (show x) ]] x [[ (show x) ]] x @@ -30,6 +30,15 @@ returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y +-- Monad (Haskell) +return : {l : Level} {A : Set l} -> A -> Similar A +return = eta + +_>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> + (x : Similar A) -> (f : A -> (Similar B)) -> (Similar B) +x >>= f = mu (fmap f x) + + -- proofs @@ -65,7 +74,7 @@ -- monad-law-2 : join . fmap return = join . return = id -- monad-law-2-1 join . fmap return = join . return monad-law-2-1 : {l : Level} {A : Set l} -> (s : Similar A) -> - (mu ∙ fmap return) s ≡ (mu ∙ return) s + (mu ∙ fmap eta) s ≡ (mu ∙ eta) s monad-law-2-1 (similar lx x ly y) = begin similar (lx ++ []) x (ly ++ []) y ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩ @@ -75,14 +84,39 @@ ∎ -- monad-law-2-2 : join . return = id -monad-law-2-2 : {l : Level} {A : Set l } -> (s : Similar A) -> (mu ∙ return) s ≡ id s +monad-law-2-2 : {l : Level} {A : Set l } -> (s : Similar A) -> (mu ∙ eta) s ≡ id s monad-law-2-2 (similar lx x ly y) = refl -- monad-law-3 : return . f = fmap f . return -monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (return ∙ f) x ≡ (fmap f ∙ return) x +monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x monad-law-3 f x = refl -- monad-law-4 : join . fmap (fmap f) = fmap f . join monad-law-4 : {l : Level} {A B : Set l} (f : A -> B) (s : Similar (Similar A)) -> (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s -monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl \ No newline at end of file +monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl + + +-- Monad-laws (Haskell) +-- monad-law-h-1 : return a >>= k = k a +monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} -> + (a : A) -> (k : A -> (Similar B)) -> + (return a >>= k) ≡ (k a) +monad-law-h-1 a k = begin + return a >>= k + ≡⟨ refl ⟩ + mu (fmap k (return a)) + ≡⟨ refl ⟩ + mu (return (k a)) + ≡⟨ refl ⟩ + (mu ∙ return) (k a) + ≡⟨ refl ⟩ + (mu ∙ eta) (k a) + ≡⟨ (monad-law-2-2 (k a)) ⟩ + id (k a) + ≡⟨ refl ⟩ + k a + ∎ + +-- monad-law-h-2 : m >>= return = m +-- monad-law-h-3 : m >>= (× -> k x >>= h) = (m >>= k) >>= h \ No newline at end of file