Mercurial > hg > Members > kono > Proof > FirstOrder
changeset 11:17cd0e70e931
add clausal form transformation
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 15 Aug 2020 10:18:55 +0900 |
parents | edf4a816abff |
children | 4b131e351170 |
files | Logic.agda clausal.agda |
diffstat | 2 files changed, 118 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/Logic.agda Thu Aug 13 18:44:09 2020 +0900 +++ b/Logic.agda Sat Aug 15 10:18:55 2020 +0900 @@ -6,7 +6,7 @@ var : Var → Expr func : Func → Expr → Expr const : Const → Expr - _,_ : Expr →Expr → Expr + _,_ : Expr → Expr → Expr data Statement : Set where pred : Pred → Statement
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/clausal.agda Sat Aug 15 10:18:55 2020 +0900 @@ -0,0 +1,117 @@ +module clausal (Const Func Var Pred : Set) where +open import Data.List hiding (all ; and ; or ) +open import Data.Bool hiding ( not ) +open import Function + +open import Logic Const Func Var Pred + +-- data Expr : Set where +-- var : Var → Expr +-- func : Func → Expr → Expr +-- const : Const → Expr +-- _,_ : Expr →Expr → Expr + +-- data Statement : Set where +-- pred : Pred → Statement +-- predx : Pred → Expr → Statement +-- _/\_ : Statement → Statement → Statement +-- _\/_ : Statement → Statement → Statement +-- ¬_ : Statement → Statement +-- All_=>_ : Var → Statement → Statement +-- Exist_=>_ : Var → Statement → Statement + +-- make negations on predicates only +negin1 : Statement → Statement + +negin : Statement → Statement +negin (pred x) = pred x +negin (predx x x₁) = predx x x₁ +negin (s /\ s₁) = negin s /\ negin s₁ +negin (s \/ s₁) = negin s \/ negin s₁ +negin (¬ s) = negin1 s +negin (All x => s) = All x => negin s +negin (Exist x => s) = Exist x => negin s + +negin1 (pred x) = ¬ (pred x) +negin1 (predx x x₁) = ¬ (predx x x₁) +negin1 (s /\ s₁) = negin1 s \/ negin1 s₁ +negin1 (s \/ s₁) = negin1 s /\ negin1 s₁ +negin1 (¬ s) = negin s +negin1 (All x => s) = (Exist x => negin1 s ) +negin1 (Exist x => s) = (All x => negin1 s) + +-- remove existential quantifiers using sokem functions +-- enough unused functions and constants for skolemization necessary +-- assuming non overrupping quantified variables + +record Skolem : Set where + field + st : Statement + cl : List Const + fl : List Func + vr : List Var + +{-# TERMINATING #-} +skolem : List Const → List Func → (sbst : Expr → Var → Expr → Expr ) → Statement → Statement +skolem cl fl sbst s = Skolem.st (skolemv record { st = s ; cl = cl ; fl = fl ; vr = [] }) where + skolemv : Skolem → Skolem + skolemv S with Skolem.vr S | Skolem.st S + skolemv S | v | All x => s = record S1 { st = All x => Skolem.st S1 } where + S1 : Skolem + S1 = skolemv record S { st = s ; vr = x ∷ v } + skolemv S | [] | (Exist x => s) with Skolem.cl S + ... | [] = S + ... | sk ∷ cl = skolemv record S { st = subst-prop s sbst x (Expr.const sk) ; cl = cl } + skolemv S | (v ∷ t) | (Exist x => s) with Skolem.fl S + ... | [] = S + ... | sk ∷ fl = skolemv record S { st = subst-prop s sbst x (func sk (mkarg v t )) ; fl = fl } where + mkarg : (v : Var) (vl : List Var ) → Expr + mkarg v [] = var v + mkarg v (v1 ∷ t ) = var v , mkarg v1 t + skolemv S | v | s /\ s₁ = record S2 { st = Skolem.st S1 /\ Skolem.st S2 } where + S1 = skolemv record S {st = s} + S2 = skolemv record S1 {st = s₁} + skolemv S | v | s \/ s₁ = record S2 { st = Skolem.st S1 \/ Skolem.st S2 } where + S1 = skolemv record S {st = s} + S2 = skolemv record S1 {st = s₁} + skolemv S | _ | _ = S + +-- remove universal quantifiers +univout : Statement → Statement +univout (s /\ s₁) = univout s /\ univout s₁ +univout (s \/ s₁) = univout s \/ univout s₁ +univout x = x + +-- move disjunctions inside +{-# TERMINATING #-} +conjn1 : Statement → Statement + +{-# TERMINATING #-} +conjn : Statement → Statement +conjn (s /\ s₁) = conjn s /\ conjn s₁ +conjn (s \/ s₁) = conjn1 ( ( conjn s ) \/ ( conjn s₁) ) +conjn x = x + +conjn1 ((x /\ y) \/ z) = conjn (x \/ y) /\ conjn (x \/ z ) +conjn1 (z \/ (x /\ y)) = conjn (z \/ x) /\ conjn (z \/ y ) +conjn1 x = x + +data Clause : Set where + _:-_ : ( x y : List Statement ) → Clause + +-- turn into [ [ [ positive ] :- [ negative ] ] +-- to remove overraps, we need equality +clausify : Statement → List Clause +clausify s = clausify1 s [] where + inclause : Statement → Clause → Clause + inclause (x \/ y ) a = inclause x ( inclause y a ) + inclause (¬ x) (a :- b ) = a :- ( x ∷ b ) + inclause x (a :- b) = ( x ∷ a ) :- b + clausify1 : Statement → List Clause → List Clause + clausify1 (x /\ y) c = clausify1 y (clausify1 x c ) + clausify1 x c = inclause x ([] :- [] ) ∷ c + +translate : Statement → List Const → List Func → (sbst : Expr → Var → Expr → Expr ) → List Clause +translate s cl fl sbst = clausify $ conjn $ univout $ skolem cl fl sbst $ negin s + +