Mercurial > hg > Members > kono > Proof > FirstOrder
changeset 5:5d1cb6ea2977
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 13 Aug 2020 11:55:49 +0900 |
parents | 8e4a4d27c621 |
children | d4a148a4809f |
files | first-order.agda |
diffstat | 1 files changed, 83 insertions(+), 61 deletions(-) [+] |
line wrap: on
line diff
--- a/first-order.agda Thu Aug 13 11:22:12 2020 +0900 +++ b/first-order.agda Thu Aug 13 11:55:49 2020 +0900 @@ -5,54 +5,62 @@ open import Relation.Nullary hiding (¬_) open import Relation.Binary.PropositionalEquality hiding ( [_] ) -data Term : Set where - X : Term - Y : Term - Z : Term - a : Term - b : Term - c : Term - f : Term - g : Term - h : Term - p : Term - q : Term - r : Term - _⟨_⟩ : Term → Term → Term - _,_ : Term → Term → Term - _/\_ : Term → Term → Term - _\/_ : Term → Term → Term - ¬ : Term → Term - all_=>_ : Term → Term → Term - ∃_=>_ : Term → Term → Term +module Logic (Atom : Set ) (Const Func Var Pred : Atom → Set) where -module Logic (Const Func Var Pred : Term → Set) where + data Term : Set where + *_ : Atom → Term + _⟨_⟩ : Atom → Term → Term + _,_ : Term → Term → Term + _/\_ : Term → Term → Term + _\/_ : Term → Term → Term + ¬ : Term → Term + all_=>_ : Atom → Term → Term + ∃_=>_ : Atom → Term → Term data Expr : Term → Set where - var : {v : Term} → Var v → Expr v - func : {x args : Term} → (f : Func x) → Expr args → Expr ( x ⟨ args ⟩ ) - const : {c : Term} → Const c → Expr c + var : {v : Atom } → Var v → Expr (* v) + func : {x : Atom } { args : Term} → (f : Func x) → Expr args → Expr ( x ⟨ args ⟩ ) + const : {c : Atom } → Const c → Expr (* c) args : {x y : Term} → (ex : Expr x) → (ey : Expr y) → Expr ( x , y ) data Statement : Term → Set where - atom : {x : Term } → Pred x → Statement ( x ) - predicate : {p args : Term } → Pred p → Expr args → Statement ( p ⟨ args ⟩ ) + atom : {x : Atom } → Pred x → Statement ( * x ) + predicate : {p : Atom } {args : Term } → Pred p → Expr args → Statement ( p ⟨ args ⟩ ) and : {x y : Term } → Statement x → Statement y → Statement ( x /\ y ) or : {x y : Term } → Statement x → Statement y → Statement ( x \/ y ) not : {x : Term } → Statement x → Statement ( ¬ x ) - All : {x t : Term} → Var x → Statement t → Statement ( all x => t ) - Exist : {x t : Term} → Var x → Statement t → Statement ( ∃ x => t ) + All : {x : Atom } { t : Term} → Var x → Statement t → Statement ( all x => t ) + Exist : {x : Atom } { t : Term} → Var x → Statement t → Statement ( ∃ x => t ) - Model : ( {x : Term } → (px : Pred x ) → Bool ) - → ( {p args : Term } → (px : Pred p ) → Expr args → Bool ) + Model : (ampa : {x : Atom } → (px : Pred x ) → Bool ) + → (pmap : {p : Atom } { args : Term } → (px : Pred p ) → Expr args → Bool ) + → (all0 : {x : Atom } → (px : Var x ) → { t : Term } → Statement t → Bool ) + → (exist : {x : Atom } → (px : Var x ) → { t : Term } → Statement t → Bool ) → {t : Term } → Statement t → Bool - Model amap pmap (atom x) = amap x - Model amap pmap (predicate x x₁) = pmap x x₁ - Model amap pmap (and s s₁) = Model amap pmap s ∧ Model amap pmap s₁ - Model amap pmap (or s s₁) = Model amap pmap s ∨ Model amap pmap s₁ - Model amap pmap (not s) = Data.Bool.not (Model amap pmap s ) - Model amap pmap (All x s) = {!!} - Model amap pmap (Exist x s) = {!!} + Model amap pmap all0 exist s = model s where + model : {t : Term} → Statement t → Bool + model (atom x) = amap x + model (predicate x x₁) = pmap x x₁ + model (and s s₁) = model s ∧ model s₁ + model (or s s₁) = model s ∨ model s₁ + model (not s) = Data.Bool.not (model s ) + model (All x s) = all0 x s + model (Exist x s) = exist x s + +data Atom : Set where + X : Atom + Y : Atom + Z : Atom + a : Atom + b : Atom + c : Atom + f : Atom + g : Atom + h : Atom + p : Atom + q : Atom + r : Atom + data Kind : Set where pred : Kind @@ -63,7 +71,7 @@ arg : Kind args : Kind -data Kinds : Term → Kind → Set where +data Kinds : Atom → Kind → Set where kX : Kinds X var kY : Kinds Y var kZ : Kinds Z var @@ -76,38 +84,31 @@ kp : Kinds p pred kq : Kinds q pred kr : Kinds r pred - karg : (x y : Term ) → Kinds (x ⟨ y ⟩ ) arg - kargs : (x y : Term ) → Kinds (x , y ) args - kand : (x y : Term ) → Kinds (x /\ y ) conn - kor : (x y : Term ) → Kinds (x \/ y ) conn - knot : (x : Term ) → Kinds (¬ x ) conn - kall_ : (x y : Term ) → Kinds (all x => y ) conn - kexit : (x y : Term ) → Kinds (∃ x => y ) conn -Const : Term → Set +Const : Atom → Set Const x = Kinds x const -Func : Term → Set +Func : Atom → Set Func x = Kinds x func -Var : Term → Set +Var : Atom → Set Var x = Kinds x var -Pred : Term → Set +Pred : Atom → Set Pred x = Kinds x pred +open Logic Atom Const Func Var Pred + ex1 : Term -ex1 = ¬ ( p /\ ( all X => ( p ⟨ f ⟨ X ⟩ ⟩ ))) - -open Logic Const Func Var Pred +ex1 = ¬ ( (* p ) /\ ( all X => ( p ⟨ f ⟨ * X ⟩ ⟩ ))) parse-arg : (t : Term ) → Maybe (Expr t ) -parse-arg X = just (var kX) -parse-arg Y = just (var kY) -parse-arg Z = just (var kZ) -parse-arg a = just (const ka) -parse-arg b = just (const kb) -parse-arg c = just (const kc) +parse-arg (* X) = just (var kX) +parse-arg (* Y) = just (var kY) +parse-arg (* Z) = just (var kZ) +parse-arg (* a) = just (const ka) +parse-arg (* b) = just (const kb) +parse-arg (* c) = just (const kc) parse-arg (f ⟨ x ⟩) with parse-arg x parse-arg (f ⟨ x ⟩) | just pt = just ( func kf pt ) parse-arg (f ⟨ x ⟩) | nothing = nothing @@ -124,9 +125,9 @@ parse-arg _ = nothing parse : (t : Term ) → Maybe (Statement t ) -parse p = just ( atom kp ) -parse q = just ( atom kq ) -parse r = just ( atom kr ) +parse (* p) = just ( atom kp ) +parse (* q) = just ( atom kq ) +parse (* r) = just ( atom kr ) parse (p ⟨ x ⟩) with parse-arg x parse (p ⟨ x ⟩) | just y = just ( predicate kp y ) parse (p ⟨ x ⟩) | nothing = nothing @@ -167,3 +168,24 @@ parse _ = nothing ex2 = parse ex1 + +subst-expr : {e xv : Term } { x : Atom } → Expr e → Var x → (value : Expr xv ) → Expr {!!} +subst-expr = {!!} + +subst-prop : {xv t : Term } {x : Atom } (orig : Statement t ) → Var x → (value : Expr xv ) → Statement {!!} +subst-prop = {!!} + +ampa : {x : Atom } → (px : Pred x ) → Bool +ampa {p} px = false +ampa {q} px = true +ampa {r} px = false +pmap : {p : Atom } { args : Term } → (px : Pred p ) → Expr args → Bool +pmap {p} px (Logic.func kf (Logic.const x)) = true +pmap {p} px (Logic.func kf _) = false +pmap {p} px _ = false +pmap {q} {y} px _ = false +pmap {r} {y} px _ = false +all0 : {x : Atom } → (px : Var x ) → { t : Term } → Statement t → Bool +all0 = {!!} +exist : {x : Atom } → (px : Var x ) → { t : Term } → Statement t → Bool +exist = {!!}