Mercurial > hg > Members > kono > Proof > FirstOrder
changeset 18:6cd5b63ecc38
replace syntax
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Aug 2020 13:34:12 +0900 |
parents | 76e933149151 |
children | 55a0d814fce7 |
files | Logic.agda clausal.agda example1.agda example2.agda simple-logic.agda |
diffstat | 5 files changed, 64 insertions(+), 48 deletions(-) [+] |
line wrap: on
line diff
--- a/Logic.agda Sat Aug 15 17:15:14 2020 +0900 +++ b/Logic.agda Sat Aug 22 13:34:12 2020 +0900 @@ -3,29 +3,19 @@ open import Data.Bool hiding ( not ; _∧_ ; _∨_ ) data Expr : Set where - var : Var → Expr - func : Func → Expr → Expr + var : Var → Expr + func : Func → Expr → Expr const : Const → Expr - _,_ : Expr → Expr → Expr + _,_ : Expr → Expr → Expr data Statement : Set where - pred : Pred → Statement - predx : Pred → Expr → Statement - _∧_ : Statement → Statement → Statement - _∨_ : Statement → Statement → Statement - ¬_ : Statement → Statement - All_=>_ : Var → Statement → Statement - Exist_=>_ : Var → Statement → Statement - --- Exprindepenent variable substituion using dependent substution (sbst) -subst-prop : (e : Statement ) → (sbst : Expr → Var → Expr → Expr ) → Var → Expr → Statement -subst-prop (pred x) sbst xv v = pred x -subst-prop (predx x x₁) sbst xv v = predx x ( sbst x₁ xv v ) -subst-prop (e ∧ e₁) sbst xv v = ( subst-prop e sbst xv v ) ∧ ( subst-prop e₁ sbst xv v ) -subst-prop (e ∨ e₁) sbst xv v = ( subst-prop e sbst xv v ) ∨ ( subst-prop e₁ sbst xv v ) -subst-prop (¬ e) sbst xv v = ¬ ( subst-prop e sbst xv v ) -subst-prop (All x => e) sbst xv v = All x => ( subst-prop e sbst xv v ) -subst-prop (Exist x => e) sbst xv v = Exist x => ( subst-prop e sbst xv v ) + pred : Pred → Statement + predx : Pred → Expr → Statement + _∧_ : Statement → Statement → Statement + _∨_ : Statement → Statement → Statement + ¬_ : Statement → Statement + All_=>_ : Var → Statement → Statement + Exist_=>_ : Var → Statement → Statement -- -- The interpretation @@ -34,22 +24,35 @@ -- {-# TERMINATING #-} M : (amap : Pred → Bool ) (pmap : Pred → Expr → Bool ) - → (all-const : List Expr ) - → (sbst : Expr → Var → Expr → Expr ) + → (all-const : List Expr ) + → (sbst : Expr → Var → Expr → Expr ) → Statement → Bool M amap pmap all0 sbst s = m s where + + -- Expr indepenent variable substituion using Expr substution (sbst) + _[_/_] : (e : Statement ) → Var → Expr → Statement + (pred x) [ xv / v ] = pred x + (predx x x₁) [ xv / v ] = predx x ( sbst x₁ xv v ) + (e ∧ e₁) [ xv / v ] = ( e [ xv / v ]) ∧ ( e₁ [ xv / v ]) + (e ∨ e₁) [ xv / v ] = ( e [ xv / v ]) ∨ ( e₁ [ xv / v ]) + (¬ e) [ xv / v ] = ¬ ( e [ xv / v ]) + (All x => e) [ xv / v ] = All x => ( e [ xv / v ]) + (Exist x => e) [ xv / v ] = Exist x => ( e [ xv / v ]) + m : Statement → Bool - m (pred x) = amap x + m (pred x) = amap x m (predx x x₁) = pmap x x₁ - m (s ∧ s₁) = m s Data.Bool.∧ m s₁ - m (s ∨ s₁) = m s Data.Bool.∨ m s₁ - m (¬ s) = Data.Bool.not (m s ) + m (s ∧ s₁) = m s Data.Bool.∧ m s₁ + m (s ∨ s₁) = m s Data.Bool.∨ m s₁ + m (¬ s) = Data.Bool.not (m s ) + -- an esasy emulation of quantifier using a variable free expr list m (All x => s) = m-all all0 x s where - m-all : List Expr → Var → Statement → Bool - m-all [] vx s = true - m-all (x ∷ t) vx s = m (subst-prop s sbst vx x ) Data.Bool.∧ m-all t vx s + m-all : List Expr → Var → Statement → Bool + m-all [] vx s = true + m-all (x ∷ t) vx s = m ( s [ vx / x ]) Data.Bool.∧ m-all t vx s m (Exist x => s) = m-exist all0 x s where - m-exist : List Expr → Var → Statement → Bool + m-exist : List Expr → Var → Statement → Bool m-exist [] vx s = false - m-exist (x ∷ t) vx s = m (subst-prop s sbst vx x ) Data.Bool.∨ m-exist t vx s + m-exist (x ∷ t) vx s = m ( s [ vx / x ] ) Data.Bool.∨ m-exist t vx s +
--- a/clausal.agda Sat Aug 15 17:15:14 2020 +0900 +++ b/clausal.agda Sat Aug 22 13:34:12 2020 +0900 @@ -47,14 +47,24 @@ {-# TERMINATING #-} skolem : List Const → List Func → (sbst : Expr → Var → Expr → Expr ) → Statement → Statement skolem cl fl sbst s = skolemv1 ( λ s cl fl vr → s ) s cl fl [] where + -- Expr indepenent variable substituion using Expr substution (sbst) + _[_/_] : (e : Statement ) → Var → Expr → Statement + (pred x) [ xv / v ] = pred x + (predx x x₁) [ xv / v ] = predx x ( sbst x₁ xv v ) + (e ∧ e₁) [ xv / v ] = ( e [ xv / v ]) ∧ ( e₁ [ xv / v ]) + (e ∨ e₁) [ xv / v ] = ( e [ xv / v ]) ∨ ( e₁ [ xv / v ]) + (¬ e) [ xv / v ] = ¬ ( e [ xv / v ]) + (All x => e) [ xv / v ] = All x => ( e [ xv / v ]) + (Exist x => e) [ xv / v ] = Exist x => ( e [ xv / v ]) + skolemv1 : (Statement → List Const → List Func → List Var → Statement ) → Statement → List Const → List Func → List Var → Statement skolemv1 next (All x => s ) cl fl vl = skolemv1 next s cl fl ( x ∷ vl) -- all existential quantifiers are replaced by constants or funcions skolemv1 next (Exist x => s ) [] fl [] = skolemv1 next s [] fl [] - skolemv1 next (Exist x => s ) (sk ∷ cl ) fl [] = skolemv1 next (subst-prop s sbst x (Expr.const sk)) cl fl [] + skolemv1 next (Exist x => s ) (sk ∷ cl ) fl [] = skolemv1 next (s [ x / (Expr.const sk) ] ) cl fl [] skolemv1 next (Exist x => s ) cl [] (v ∷ t) = skolemv1 next s cl [] (v ∷ t) - skolemv1 next (Exist x => s ) cl (sk ∷ fl) (v ∷ t) = skolemv1 next (subst-prop s sbst x (func sk (mkarg v t) )) cl fl (v ∷ t) where + skolemv1 next (Exist x => s ) cl (sk ∷ fl) (v ∷ t) = skolemv1 next (s [ x / (func sk (mkarg v t) ) ] ) cl fl (v ∷ t) where mkarg : (v : Var) (vl : List Var ) → Expr mkarg v [] = var v mkarg v (v1 ∷ t ) = var v , mkarg v1 t
--- a/example1.agda Sat Aug 15 17:15:14 2020 +0900 +++ b/example1.agda Sat Aug 22 13:34:12 2020 +0900 @@ -48,11 +48,11 @@ all0 : List Expr all0 = const a ∷ const b ∷ const c ∷ [] -test003 : Bool -test003 = M amap pmap all0 subst-expr ( Exist X => predx p (var X) ) +test3 : Bool +test3 = M amap pmap all0 subst-expr ( Exist X => predx p (var X) ) open import clausal Const Func Var Pred -test004 : List Clause -test004 = translate ( Exist X => predx p (var X) ) (c ∷ []) (h ∷ []) subst-expr +test4 : List Clause +test4 = translate ( Exist X => predx p (var X) ) (c ∷ []) (h ∷ []) subst-expr
--- a/example2.agda Sat Aug 15 17:15:14 2020 +0900 +++ b/example2.agda Sat Aug 22 13:34:12 2020 +0900 @@ -87,3 +87,6 @@ test7 : List Clause test7 = translate ex1 [] [] subst-expr + +-- brother (X , Y) :- father (X , Z) , father (Y , Z) +
--- a/simple-logic.agda Sat Aug 15 17:15:14 2020 +0900 +++ b/simple-logic.agda Sat Aug 22 13:34:12 2020 +0900 @@ -37,15 +37,15 @@ subst-expr (x , y ) n v = (subst-expr x n v) , (subst-expr y n v) subst-expr x n v = x -subst-prop : (orig : Statement ) → Var → (value : Expr ) → Statement -subst-prop (p x ) n v = p ( subst-expr x n v ) -subst-prop q n v = q -subst-prop r n v = r -subst-prop (x ∧ y) n v = subst-prop x n v ∧ subst-prop x n v -subst-prop (x ∨ y) n v = subst-prop x n v ∨ subst-prop x n v -subst-prop (¬ x) n v = ¬ (subst-prop x n v ) -subst-prop (all x => y) n v = all x => subst-prop y n v -subst-prop (∃ x => y) n v = ∃ x => subst-prop y n v +_[_/_] : (orig : Statement ) → Var → (value : Expr ) → Statement +(p x ) [ n / v ] = p ( subst-expr x n v ) +q [ n / v ] = q +r [ n / v ] = r +(x ∧ y) [ n / v ] = (x [ n / v ] ) ∧ (x [ n / v ]) +(x ∨ y) [ n / v ] = (x [ n / v ] ) ∨ (x [ n / v ]) +(¬ x) [ n / v ] = ¬ (x [ n / v ] ) +(all x => y) [ n / v ] = all x => (y [ n / v ]) +(∃ x => y) [ n / v ] = ∃ x => (y [ n / v ]) {-# TERMINATING #-} M0 : Statement → Bool @@ -56,8 +56,8 @@ M0 (x ∨ y) = M0 x Data.Bool.∨ M0 y M0 (¬ x) = not (M0 x) -- we only try simple constant, it may contains arbitrary complex functional value -M0 (all x => y) = M0 ( subst-prop y x a ) Data.Bool.∧ M0 ( subst-prop y x b ) Data.Bool.∧ M0 ( subst-prop y x c ) -M0 (∃ x => y) = M0 ( subst-prop y x a ) Data.Bool.∨ M0 ( subst-prop y x b ) Data.Bool.∨ M0 ( subst-prop y x c ) +M0 (all x => y) = M0 ( y [ x / a ] ) Data.Bool.∧ M0 ( y [ x / b ] ) Data.Bool.∧ M0 ( y [ x / c ] ) +M0 (∃ x => y) = M0 ( y [ x / a ] ) Data.Bool.∨ M0 ( y [ x / b ] ) Data.Bool.∨ M0 ( y [ x / c ] ) M0 _ = false test3 : Bool