Mercurial > hg > Members > kono > Proof > FirstOrder
changeset 3:9633bb018116
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 13 Aug 2020 11:07:35 +0900 |
parents | 08f8256a6b11 |
children | 8e4a4d27c621 |
files | first-order.agda |
diffstat | 1 files changed, 85 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/first-order.agda Thu Aug 13 10:17:15 2020 +0900 +++ b/first-order.agda Thu Aug 13 11:07:35 2020 +0900 @@ -2,6 +2,7 @@ open import Data.List hiding (all ; and ; or ) open import Data.Maybe open import Data.Bool hiding ( not ) +open import Relation.Nullary hiding (¬_) open import Relation.Binary.PropositionalEquality hiding ( [_] ) data Term : Set where @@ -25,6 +26,23 @@ all_=>_ : Term → Term → Term ∃_=>_ : Term → Term → Term +module Logic (Const Func Var Pred : Term → Set) where + + data Expr : Term → Set where + var : {v : Term} → Var v → Expr v + func : {x args : Term} → (f : Func x) → Expr args → Expr ( x ⟨ args ⟩ ) + const : {c : Term} → Const c → Expr c + args : {x y : Term} → (ex : Expr x) → (ey : Expr y) → Expr ( x , y ) + + data Statement : Term → Set where + atom : {x : Term } → Pred x → Statement ( x ) + predicate : {p args : Term } → Pred p → Expr args → Statement ( p ⟨ args ⟩ ) + and : {x y : Term } → Statement x → Statement y → Statement ( x /\ y ) + or : {x y : Term } → Statement x → Statement y → Statement ( x \/ y ) + not : {x : Term } → Statement x → Statement ( ¬ x ) + All : {x t : Term} → Var x → Statement t → Statement ( all x => t ) + Exist : {x t : Term} → Var x → Statement t → Statement ( ∃ x => t ) + data Kind : Set where pred : Kind const : Kind @@ -85,41 +103,77 @@ Var : Term → Set Var x = Kinds x var -Predicate : Term → Set -Predicate x = Kinds x pred +Pred : Term → Set +Pred x = Kinds x pred ex1 : Term ex1 = ¬ ( p /\ ( all X => ( p ⟨ f ⟨ X ⟩ ⟩ ))) -module Logic (Const Func Var Pred : Term → Set) where +open Logic Const Func Var Pred - data Expr : Term → Set where - var : {v : Term} → Var v → Expr v - func : {x args : Term} → (f : Func x) → Expr args → Expr ( x ⟨ args ⟩ ) - const : {c : Term} → Const c → Expr c - args : {x y : Term} → (ex : Expr x) → (ey : Expr y) → Expr ( x , y ) +parse-arg : (t : Term ) → Maybe (Expr t ) +parse-arg X = just (var kX) +parse-arg Y = just (var kY) +parse-arg Z = just (var kZ) +parse-arg a = just (const ka) +parse-arg b = just (const kb) +parse-arg c = just (const kc) +parse-arg (f ⟨ x ⟩) with parse-arg x +parse-arg (f ⟨ x ⟩) | just pt = just ( func kf pt ) +parse-arg (f ⟨ x ⟩) | nothing = nothing +parse-arg (g ⟨ x ⟩) with parse-arg x +parse-arg (g ⟨ x ⟩) | just pt = just ( func kg pt ) +parse-arg (g ⟨ x ⟩) | nothing = nothing +parse-arg (h ⟨ x ⟩) with parse-arg x +parse-arg (h ⟨ x ⟩) | just pt = just ( func kh pt ) +parse-arg (h ⟨ x ⟩) | nothing = nothing +parse-arg (_ ⟨ x ⟩) = nothing +parse-arg (t , t₁) with parse-arg t | parse-arg t₁ +... | just x | just y = just ( args x y ) +... | _ | _ = nothing +parse-arg _ = nothing - data Statement : Term → Set where - atom : {x : Term } → Pred x → Statement ( x ) - predicate : {p args : Term } → Pred p → Expr args → Statement ( p ⟨ args ⟩ ) - and : {x y : Term } → Statement x → Statement y → Statement ( x /\ y ) - or : {x y : Term } → Statement x → Statement y → Statement ( x \/ y ) - not : {x : Term } → Statement x → Statement ( ¬ x ) - All : {x t : Term} → Var x → Statement t → Statement ( all x => t ) - Exist : {x t : Term} → Var x → Statement t → Statement ( ∃ x => t ) - +parse : (t : Term ) → Maybe (Statement t ) +parse p = just ( atom kp ) +parse q = just ( atom kq ) +parse r = just ( atom kr ) +parse (p ⟨ x ⟩) with parse-arg x +parse (p ⟨ x ⟩) | just y = just ( predicate kp y ) +parse (p ⟨ x ⟩) | nothing = nothing +parse (q ⟨ x ⟩) with parse-arg x +parse (q ⟨ x ⟩) | just y = just ( predicate kq y ) +parse (q ⟨ x ⟩) | nothing = nothing +parse (r ⟨ x ⟩) with parse-arg x +parse (r ⟨ x ⟩) | just y = just ( predicate kr y ) +parse (r ⟨ x ⟩) | nothing = nothing +parse (_ ⟨ x ⟩) = nothing +parse (t /\ t₁) with parse t | parse t₁ +parse (t /\ t₁) | just p₁ | just p₂ = just ( and p₁ p₂ ) +parse (t /\ t₁) | _ | _ = nothing +parse (t \/ t₁) with parse t | parse t₁ +parse (t \/ t₁) | just p₁ | just p₂ = just ( or p₁ p₂ ) +parse (t \/ t₁) | _ | _ = nothing +parse (¬ t) with parse t +parse (¬ t) | just tx = just ( not tx ) +parse (¬ t) | _ = nothing +parse (all X => t₁) with parse t₁ +... | just tx = just ( All kX tx ) +... | _ = nothing +parse (all Y => t₁) with parse t₁ +... | just tx = just ( All kY tx ) +... | _ = nothing +parse (all Z => t₁) with parse t₁ +... | just tx = just ( All kZ tx ) +... | _ = nothing +parse (∃ X => t₁) with parse t₁ +... | just tx = just ( Exist kX tx ) +... | _ = nothing +parse (∃ Y => t₁) with parse t₁ +... | just tx = just ( Exist kY tx ) +... | _ = nothing +parse (∃ Z => t₁) with parse t₁ +... | just tx = just ( Exist kZ tx ) +... | _ = nothing +parse _ = nothing - parse : (t : Term ) → Maybe (Statement t ) - parse t with kindOf t - parse t | pred = {!!} - parse t | const = {!!} - parse t | var = {!!} - parse t | func = {!!} - parse t | conn = {!!} - parse t | arg = {!!} - parse t | args = {!!} - - - - - + ex2 = parse ex1